$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

High speed capacitive deionization system with flow-through electrodes

Desalination, v.496, 2020년, pp.114750 -   

Guo, Lu (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Ding, Meng (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Yan, Dong (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Pam, Mei Er (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Vafakhah, Sareh (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Gu, Chengding (School of Materials and Energy, Yunnan University) ,  Zhang, Wang (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Valdivia y Alvarado, Pablo (Pillar of Engineering Product Development, Singapore University of Technology and Design) ,  Shi, Yumeng (International Collaborative Laboratory of 2D Materials for Optoelectronics Science) ,  Yang, Hui Ying

Abstract AI-Helper 아이콘AI-Helper

Abstract Capacitive deionization (CDI) is considered as a promising approach to sustain fresh water supply with environmental friendliness and convenient electrode regeneration. As a novel CDI system, flow-through electrode (FTE) CDI is drawing researchers' attention due to its structural simplicit...

주제어

참고문헌 (50)

  1. Nature Shannon 452 7185 301 2008 10.1038/nature06599 Science and technology for water purification in the coming decades 

  2. Science Elimelech 333 6043 712 2011 10.1126/science.1200488 The future of seawater desalination: energy, technology, and the environment 

  3. J. Mater. Chem. A Guo 2018 A high performance electrochemical deionization method to desalinate brackish water with FePO4/RGO nanocomposite 

  4. FlatChem Guo 8 17 2018 10.1016/j.flatc.2018.01.001 Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination 

  5. Energy Environ. Sci. Zhao 5 11 9520 2012 10.1039/c2ee21737f Energy consumption and constant current operation in membrane capacitive deionization 

  6. Adv. Mater. Yin 25 43 6270 2013 10.1002/adma.201302223 Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water 

  7. Nano Lett. Cohen-Tanugi 12 7 3602 2012 10.1021/nl3012853 Water desalination across nanoporous graphene 

  8. Nanoscale Guo 2017 10.1039/C7NR03579A A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism 

  9. J. Mater. Chem. A Guo 7 15 8912 2019 10.1039/C9TA00700H The efficient faradaic Li4Ti5O12@C electrode exceeds the membrane capacitive desalination performance 

  10. Prog. Mater. Sci. Porada 58 8 1388 2013 10.1016/j.pmatsci.2013.03.005 Review on the science and technology of water desalination by capacitive deionization 

  11. Chemosphere Kalfa 241 125003 2019 10.1016/j.chemosphere.2019.125003 Capacitive deionization for wastewater treatment: opportunities and challenges 

  12. Desalination Welgemoed 183 1-3 327 2005 10.1016/j.desal.2005.02.054 Capacitive deionization technologyTM: an alternative desalination solution 

  13. Desalination Li 275 1-3 62 2011 10.1016/j.desal.2011.02.027 Ion-exchange membrane capacitive deionization: a new strategy for brackish water desalination 

  14. J. Mater. Chem. A Ding 5 13 6113 2017 10.1039/C7TA00339K Bimetallic metal-organic framework derived porous carbon nanostructures for high performance membrane capacitive desalination 

  15. Desalination Remillard 444 169 2018 10.1016/j.desal.2018.01.018 A direct comparison of flow-by and flow-through capacitive deionization 

  16. Science Advances Liu 6 16 eaaz0906 2020 10.1126/sciadv.aaz0906 Exceptional capacitive deionization rate and capacity by block copolymer-based porous carbon fibers 

  17. Desalination Mohamed 477 114278 2020 10.1016/j.desal.2019.114278 Eco-friendly facile synthesis of glucose-derived microporous carbon spheres electrodes with enhanced performance for water capacitive deionization 

  18. Sep. Purif. Technol. Sufiani 116998 2020 Enhanced electrosorption capacity of activated carbon electrodes for deionized water production through capacitive deionization 

  19. Membranes Folaranmi 10 5 96 2020 10.3390/membranes10050096 Towards electrochemical water desalination techniques: a review on capacitive deionization, membrane capacitive deionization and flow capacitive deionization 

  20. Energy Environ. Sci. Suss 5 11 9511 2012 10.1039/c2ee21498a Capacitive desalination with flow-through electrodes 

  21. Electrochim. Acta Zhang 299 727 2019 10.1016/j.electacta.2019.01.058 Comparison of faradaic reactions in flow-through and flow-by capacitive deionization (CDI) systems 

  22. Bhandarkar 2019 Effects of Pore Size on Na/Ca Ion Selectivity Using Flow Through Electrode Capacitive Deionization 

  23. Energy Environ. Sci. Suss 5 11 9511 2012 10.1039/c2ee21498a Capacitive desalination with flow-through electrodes 

  24. ChemistrySelect Ahirrao 4 9 2610 2019 10.1002/slct.201803417 Sweet-lime-peels-derived activated-carbon-based electrode for highly efficient Supercapacitor and flow-through water desalination 

  25. Desalination Guyes 415 8 2017 10.1016/j.desal.2017.03.013 A one-dimensional model for water desalination by flow-through electrode capacitive deionization 

  26. RSC Adv. Guyes 7 34 21308 2017 10.1039/C7RA00459A Several orders of magnitude increase in the hydraulic permeability of flow-through capacitive deionization electrodes via laser perforations 

  27. Water Res. Ye 157 134 2019 10.1016/j.watres.2019.03.058 Efficient treatment of brine wastewater through a flow-through technology integrating desalination and photocatalysis 

  28. Energy Environ. Sci. Deng 2 8 818 2009 10.1039/b823474d Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries 

  29. Adv. Mater. Guo 19 16 2087 2007 10.1002/adma.200602828 Superior electrode performance of nanostructured mesoporous TiO2 (anatase) through efficient hierarchical mixed conducting networks 

  30. Adv. Mater. Hu 18 11 1421 2006 10.1002/adma.200502723 High lithium electroactivity of nanometer-sized rutile TiO2 

  31. Adv. Funct. Mater. Li 21 9 1717 2011 10.1002/adfm.201002295 Battery performance and photocatalytic activity of mesoporous anatase TiO2 nanospheres/graphene composites by template-free self-assembly 

  32. Electrochim. Acta Liu 96 173 2013 10.1016/j.electacta.2013.02.099 Microwave-assisted ionothermal synthesis of nanostructured anatase titanium dioxide/activated carbon composite as electrode material for capacitive deionization 

  33. J. Am. Chem. Soc. Qiu 136 16 5852 2014 10.1021/ja500873u Mesoporous TiO2 nanocrystals grown in situ on graphene aerogels for high photocatalysis and lithium-ion batteries 

  34. Chem. Mater. Su 27 17 6022 2015 10.1021/acs.chemmater.5b02348 Anatase TiO2: better anode material than amorphous and rutile phases of TiO2 for Na-ion batteries 

  35. Chem. Soc. Rev. Tian 43 20 6920 2014 10.1039/C4CS00180J Recent progress in design, synthesis, and applications of one-dimensional TiO2 nanostructured surface heterostructures: a review 

  36. The journal of physical chemistry letters Xiong 2 20 2560 2011 10.1021/jz2012066 Amorphous TiO2 nanotube anode for rechargeable sodium ion batteries 

  37. Nano Lett. Pu 13 8 3817 2013 10.1021/nl4018385 Au nanostructure-decorated TiO2 nanowires exhibiting photoactivity across entire UV-visible region for photoelectrochemical water splitting 

  38. J. Phys. Chem. C Sun 117 44 22497 2013 10.1021/jp4066955 Pseudocapacitance of amorphous TiO2 thin films anchored to graphene and carbon nanotubes using atomic layer deposition 

  39. Desalination El-Deen 361 53 2015 10.1016/j.desal.2015.01.033 TiO2 nanorod-intercalated reduced graphene oxide as high performance electrode material for membrane capacitive deionization 

  40. Desalination Kim 342 70 2014 10.1016/j.desal.2013.07.016 TiO2 sol-gel spray method for carbon electrode fabrication to enhance desalination efficiency of capacitive deionization 

  41. ACS Applied Energy Materials Ding 2 3 1812 2019 10.1021/acsaem.8b01839 Tunable pseudocapacitive behavior in metal-organic framework-derived TiO2@porous carbon enabling high-performance membrane capacitive deionization 

  42. Sci. Rep. Liu 6 33839 2016 10.1038/srep33839 Hydrothermal etching fabrication of TiO2@graphene hollow structures: mutually independent exposed {001} and {101} facets nanocrystals and its synergistic photocaltalytic effects 

  43. Appl. Surf. Sci. Cao 382 225 2016 10.1016/j.apsusc.2016.04.138 Role of hydroxylation modification on the structure and property of reduced graphene oxide/TiO2 hybrids 

  44. Mater. Chem. Phys. Singh 133 1 317 2012 10.1016/j.matchemphys.2012.01.030 Studies on morphological and optoelectronic properties of MEH-CN-PPV:TiO2 nanocomposites 

  45. Anal. Chem. Spurr 29 5 760 1957 10.1021/ac60125a006 Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer 

  46. J. Mater. Chem. A Huang 2017 Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite 

  47. Desalination Huang 2018 Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3-AgNPs electrodes 

  48. Desalination Leong 2017 Three-dimensional graphene oxide and polyvinyl alcohol composites as structured activated carbons for capacitive desalination 

  49. AIChE Journal Bouhadana 56 3 779 2010 10.1002/aic.12005 Several basic and practical aspects related to electrochemical deionization of water 

  50. Advanced Materials Technologies Ding 3 11 1800135 2018 10.1002/admt.201800135 Free-standing electrodes derived from metal-organic frameworks/nanofibers hybrids for membrane capacitive deionization 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로