최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Theoretical and applied fracture mechanics, v.109, 2020년, pp.102746 -
Nguyen, Thanh Tuan (Corresponding author.) , Beak, Un Bong , Park, Jaeyeong , Nahm, Seung Hoon , Tak, Naehyung
Abstract In this study, the susceptibility of API X70 weld joints to hydrogen gas was investigated using slow strain rate tensile (SSRT) tests. The microstructure of the subregion of the actual heat-affected zone (HAZ) weld joint was reproduced by weld thermal-cycle simulation techniques. The SSRT ...
Bailey 1993 Welding Steels Without Hydrogen Cracking
Lippold 2015 Welding Metallurgy and Weldability
Xu 526 2012 Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Hydrogen embrittlement of carbon steels and their welds
Mater. Sci. Eng. A Yang 736 193 2018 10.1016/j.msea.2018.08.099 Evaluation of the microstructure related strength of CrMoV weldment by using the in-situ tensile test of miniature specimen
Eng. Fract. Mech. Zerbst 132 200 2014 10.1016/j.engfracmech.2014.05.012 Review on fracture and crack propagation in weldments - A fracture mechanics perspective
Metal. Mater. Trans. A Laha 40 2 386 2009 10.1007/s11661-008-9724-x Type IV cracking susceptibility in weld joints of different grades of Cr-Mo ferritic steel
J. Res. Natl. Inst. Stand. Technol. Drexler 124 1 2019 10.6028/jres.124.008 Fatigue testing of pipeline welds and heat-affected zones in pressurized hydrogen gas
Mater. Sci. Techno. Francis 22 12 1387 2006 10.1179/174328406X148778 Review type IV cracking in ferritic power plant steels
Mater. Sci. Balyts’kyi 45 97 2009 10.1007/s11003-009-9166-7 Strength of welded joints of Cr-Mn steels with elevated content of nitrogen in hydrogen-containing media
Paton Weld. J. C/C Avtomaticheskaia Svarka Balitsky 2003 26 2003 Physical-mechanical non-homogeneity of welded joints of high-nitrogen Cr Mn steels and their corrosion resistance
Metal. Mater. Trans. A Davis 25 3 563 1994 10.1007/BF02651598 Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence
Mater. Trans. A Kim 22 1 139 1991 10.1007/BF03350956 Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds
Eng. Fail. Anal. Kawiak 85 97 2018 10.1016/j.engfailanal.2017.12.011 Embrittlement of welded joints of tram rails in city environments
Int. J. Hydrog. Energy Briottet 37 17616 2012 10.1016/j.ijhydene.2012.05.143 Quantifying the hydrogen embrittlement of pipeline steels for safety considerations
J. Res. Natl. Inst. Stand. Technol. Nanninga 115 6 437 2010 10.6028/jres.115.030 A review of fatigue crack growth for pipeline steels exposed to hydrogen
J. Press. Vessel Techno. Drexler 140 6 2018 Operating hydrogen gas transmission pipelines at pressures above 21 MPa
Eng. Fract. Mech. Ronevich 194 42 2018 10.1016/j.engfracmech.2018.02.030 Fatigue crack growth rates of X100 steel welds in high pressure hydrogen gas considering residual stress effects
Theor. Appl. Fract. Mech. Álvarez 106 2020 2020 Hydrogen embrittlement analysis in a CrMoV steel by means of sent specimens
Int. J. Hydrog. Energy Matsunaga 40 5739 2015 10.1016/j.ijhydene.2015.02.098 Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere
Inter. J. Fatigue Amaro 59 262 2014 10.1016/j.ijfatigue.2013.08.010 Fatigue crack growth of X100 pipeline steels in gaseous hydrogen
Mater. Sci. Eng. A Moro 527 27-28 7252 2010 10.1016/j.msea.2010.07.027 Hydrogen embrittlement susceptibility of a high strength steel X80
Int. J. Hydrog. Energy Ogawa 43 43 20133 2018 10.1016/j.ijhydene.2018.09.026 Fatigue limit of carbon and CrMo steels as a small fatigue crack threshold in high-pressure hydrogen gas
Mater. Sci. Eng. A Birnbaum 176 1-2 191 1994 10.1016/0921-5093(94)90975-X Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture
Acta. Mater. Wang 69 275 2014 10.1016/j.actamat.2014.01.060 Hydrogen-induced intergranular failure of iron
Moro 357 2009 Effects of Hydrogen on Materials, Proc of 2008 International Hydrogen Conference Damage under high-pressure hydrogen environment of a high strength pipeline steel X80
Slifka 2013 Proc. ASME Press. Vess. Pipe. Conf. PVP2013 The effect of microstructure on the hydrogen-assisted fatigue of pipeline steels
Theor. Appl. Fract. Mech. García 86 89 2016 10.1016/j.tafmec.2016.09.005 Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels
Acta. Mater. Somerday 61 6153 2013 10.1016/j.actamat.2013.07.001 Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations
Mater. Sci. Eng. A Nguyen 781 2020 10.1016/j.msea.2020.139114 Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situe small punch test
Int. J. Fatigue Ronevich 82 497 2016 10.1016/j.ijfatigue.2015.09.004 Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels
Scripta Mater. Matsuoka 154 101 2018 10.1016/j.scriptamat.2018.05.035 Peculiar temperature dependence of hydrogen-enhanced fatigue crack growth of low-carbon steel in gaseous hydrogen
Proc. Struct. Integri. Yamabe 2 525 2016 10.1016/j.prostr.2016.06.068 Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen
Theor. Appl. Fract. Mech. Arroyo 86 61 2016 10.1016/j.tafmec.2016.08.019 Study of the energy for embrittlement damage initiation by SPT means. Estimation of KEAC in aggressive environments and rate considerations
Int. J. Hydrog. Energy Nguyen 45 2368 2020 10.1016/j.ijhydene.2019.11.013 Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel
Int. J. Hydrog. Energy Nguyen 2020 10.1016/j.ijhydene.2020.06.199 Hydrogen embrittlement susceptibility of X70 pipeline weld under a low partial hydrogen environment
ASME SFA5.5-96: Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding 3 (1996) 20-95.
American Welding Society, AWS A 5.18: Specification for carbon steel electrodes and rods for gas shielded arc welding, 2005.
Mater. Character. Lee 82 17 2013 10.1016/j.matchar.2013.05.001 Hydrogen-induced toughness drop in weld coarse-grained heat-affected zones of linepipe steel
ASTM E384: standard test method for microindentation hardness of materials, American Society for Testing and Materials, West Conshohocken: ASTM, 2017.
Corros. Sci. Park 50 1865 2008 10.1016/j.corsci.2008.03.007 Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel
Corros. Sci. Zhao 111 84 2016 10.1016/j.corsci.2016.04.029 Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment
Mater. Sci. Eng. A Arafin 528 4927 2011 10.1016/j.msea.2011.03.036 Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking
Int. J. Hydrog. Energy Zhang 42 39 25102 2017 10.1016/j.ijhydene.2017.08.081 Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen
Int. J. Hydrog. Energy Shang 2020 Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures
Xu 349 2009 Proceedings of the 2008 International Hydrogen Conference Tensile and fracture properties of carbon and low alloy steels in high pressure hydrogen
Acta Mater. Nibur 2009 57 3795 2009 10.1016/j.actamat.2009.04.027 The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.