$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Hydrogen environment assisted cracking in X70 welding heat-affected zone under a high-pressure hydrogen gas

Theoretical and applied fracture mechanics, v.109, 2020년, pp.102746 -   

Nguyen, Thanh Tuan (Corresponding author.) ,  Beak, Un Bong ,  Park, Jaeyeong ,  Nahm, Seung Hoon ,  Tak, Naehyung

Abstract AI-Helper 아이콘AI-Helper

Abstract In this study, the susceptibility of API X70 weld joints to hydrogen gas was investigated using slow strain rate tensile (SSRT) tests. The microstructure of the subregion of the actual heat-affected zone (HAZ) weld joint was reproduced by weld thermal-cycle simulation techniques. The SSRT ...

Keyword

참고문헌 (47)

  1. Bailey 1993 Welding Steels Without Hydrogen Cracking 

  2. Lippold 2015 Welding Metallurgy and Weldability 

  3. Xu 526 2012 Gaseous Hydrogen Embrittlement of Materials in Energy Technologies Hydrogen embrittlement of carbon steels and their welds 

  4. Mater. Sci. Eng. A Yang 736 193 2018 10.1016/j.msea.2018.08.099 Evaluation of the microstructure related strength of CrMoV weldment by using the in-situ tensile test of miniature specimen 

  5. Eng. Fract. Mech. Zerbst 132 200 2014 10.1016/j.engfracmech.2014.05.012 Review on fracture and crack propagation in weldments - A fracture mechanics perspective 

  6. Metal. Mater. Trans. A Laha 40 2 386 2009 10.1007/s11661-008-9724-x Type IV cracking susceptibility in weld joints of different grades of Cr-Mo ferritic steel 

  7. J. Res. Natl. Inst. Stand. Technol. Drexler 124 1 2019 10.6028/jres.124.008 Fatigue testing of pipeline welds and heat-affected zones in pressurized hydrogen gas 

  8. Mater. Sci. Techno. Francis 22 12 1387 2006 10.1179/174328406X148778 Review type IV cracking in ferritic power plant steels 

  9. Mater. Sci. Balyts’kyi 45 97 2009 10.1007/s11003-009-9166-7 Strength of welded joints of Cr-Mn steels with elevated content of nitrogen in hydrogen-containing media 

  10. Paton Weld. J. C/C Avtomaticheskaia Svarka Balitsky 2003 26 2003 Physical-mechanical non-homogeneity of welded joints of high-nitrogen Cr Mn steels and their corrosion resistance 

  11. Metal. Mater. Trans. A Davis 25 3 563 1994 10.1007/BF02651598 Cleavage initiation in the intercritically reheated coarse-grained heat-affected zone: Part I. Fractographic evidence 

  12. Mater. Trans. A Kim 22 1 139 1991 10.1007/BF03350956 Microstructure and local brittle zone phenomena in high-strength low-alloy steel welds 

  13. Eng. Fail. Anal. Kawiak 85 97 2018 10.1016/j.engfailanal.2017.12.011 Embrittlement of welded joints of tram rails in city environments 

  14. Int. J. Hydrog. Energy Briottet 37 17616 2012 10.1016/j.ijhydene.2012.05.143 Quantifying the hydrogen embrittlement of pipeline steels for safety considerations 

  15. J. Res. Natl. Inst. Stand. Technol. Nanninga 115 6 437 2010 10.6028/jres.115.030 A review of fatigue crack growth for pipeline steels exposed to hydrogen 

  16. J. Press. Vessel Techno. Drexler 140 6 2018 Operating hydrogen gas transmission pipelines at pressures above 21 MPa 

  17. Eng. Fract. Mech. Ronevich 194 42 2018 10.1016/j.engfracmech.2018.02.030 Fatigue crack growth rates of X100 steel welds in high pressure hydrogen gas considering residual stress effects 

  18. Theor. Appl. Fract. Mech. Álvarez 106 2020 2020 Hydrogen embrittlement analysis in a CrMoV steel by means of sent specimens 

  19. Int. J. Hydrog. Energy Matsunaga 40 5739 2015 10.1016/j.ijhydene.2015.02.098 Slow strain rate tensile and fatigue properties of Cr-Mo and carbon steels in a 115 MPa hydrogen gas atmosphere 

  20. 10.1533/9780857093899.3.421 W. M. Garrison Jr, N. R. Moody, Hydrogen embrittlement of high strength steels, Gaseous hydrogen embrittlement of materials in energy technologies, Woodhead Publishing, 421-492, 2012. 

  21. Inter. J. Fatigue Amaro 59 262 2014 10.1016/j.ijfatigue.2013.08.010 Fatigue crack growth of X100 pipeline steels in gaseous hydrogen 

  22. Mater. Sci. Eng. A Moro 527 27-28 7252 2010 10.1016/j.msea.2010.07.027 Hydrogen embrittlement susceptibility of a high strength steel X80 

  23. Int. J. Hydrog. Energy Ogawa 43 43 20133 2018 10.1016/j.ijhydene.2018.09.026 Fatigue limit of carbon and CrMo steels as a small fatigue crack threshold in high-pressure hydrogen gas 

  24. Mater. Sci. Eng. A Birnbaum 176 1-2 191 1994 10.1016/0921-5093(94)90975-X Hydrogen-enhanced localized plasticity - a mechanism for hydrogen-related fracture 

  25. Acta. Mater. Wang 69 275 2014 10.1016/j.actamat.2014.01.060 Hydrogen-induced intergranular failure of iron 

  26. Moro 357 2009 Effects of Hydrogen on Materials, Proc of 2008 International Hydrogen Conference Damage under high-pressure hydrogen environment of a high strength pipeline steel X80 

  27. Slifka 2013 Proc. ASME Press. Vess. Pipe. Conf. PVP2013 The effect of microstructure on the hydrogen-assisted fatigue of pipeline steels 

  28. Theor. Appl. Fract. Mech. García 86 89 2016 10.1016/j.tafmec.2016.09.005 Small punch test methodologies for the analysis of the hydrogen embrittlement of structural steels 

  29. Acta. Mater. Somerday 61 6153 2013 10.1016/j.actamat.2013.07.001 Elucidating the variables affecting accelerated fatigue crack growth of steels in hydrogen gas with low oxygen concentrations 

  30. Mater. Sci. Eng. A Nguyen 781 2020 10.1016/j.msea.2020.139114 Environment hydrogen embrittlement of pipeline steel X70 under various gas mixture conditions with in situe small punch test 

  31. Int. J. Fatigue Ronevich 82 497 2016 10.1016/j.ijfatigue.2015.09.004 Effects of microstructure banding on hydrogen assisted fatigue crack growth in X65 pipeline steels 

  32. Scripta Mater. Matsuoka 154 101 2018 10.1016/j.scriptamat.2018.05.035 Peculiar temperature dependence of hydrogen-enhanced fatigue crack growth of low-carbon steel in gaseous hydrogen 

  33. Proc. Struct. Integri. Yamabe 2 525 2016 10.1016/j.prostr.2016.06.068 Effects of hydrogen pressure, test frequency and test temperature on fatigue crack growth properties of low-carbon steel in gaseous hydrogen 

  34. Theor. Appl. Fract. Mech. Arroyo 86 61 2016 10.1016/j.tafmec.2016.08.019 Study of the energy for embrittlement damage initiation by SPT means. Estimation of KEAC in aggressive environments and rate considerations 

  35. Int. J. Hydrog. Energy Nguyen 45 2368 2020 10.1016/j.ijhydene.2019.11.013 Effect of low partial hydrogen in a mixture with methane on the mechanical properties of X70 pipeline steel 

  36. Int. J. Hydrog. Energy Nguyen 2020 10.1016/j.ijhydene.2020.06.199 Hydrogen embrittlement susceptibility of X70 pipeline weld under a low partial hydrogen environment 

  37. ASME SFA5.5-96: Specification for Low-Alloy Steel Electrodes for Shielded Metal Arc Welding 3 (1996) 20-95. 

  38. American Welding Society, AWS A 5.18: Specification for carbon steel electrodes and rods for gas shielded arc welding, 2005. 

  39. Mater. Character. Lee 82 17 2013 10.1016/j.matchar.2013.05.001 Hydrogen-induced toughness drop in weld coarse-grained heat-affected zones of linepipe steel 

  40. ASTM E384: standard test method for microindentation hardness of materials, American Society for Testing and Materials, West Conshohocken: ASTM, 2017. 

  41. Corros. Sci. Park 50 1865 2008 10.1016/j.corsci.2008.03.007 Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel 

  42. Corros. Sci. Zhao 111 84 2016 10.1016/j.corsci.2016.04.029 Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment 

  43. Mater. Sci. Eng. A Arafin 528 4927 2011 10.1016/j.msea.2011.03.036 Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking 

  44. Int. J. Hydrog. Energy Zhang 42 39 25102 2017 10.1016/j.ijhydene.2017.08.081 Effect of microstructure inhomogeneity on hydrogen embrittlement susceptibility of X80 welding HAZ under pressurized gaseous hydrogen 

  45. Int. J. Hydrog. Energy Shang 2020 Effects of stress concentration on the mechanical properties of X70 in high-pressure hydrogen-containing gas mixtures 

  46. Xu 349 2009 Proceedings of the 2008 International Hydrogen Conference Tensile and fracture properties of carbon and low alloy steels in high pressure hydrogen 

  47. Acta Mater. Nibur 2009 57 3795 2009 10.1016/j.actamat.2009.04.027 The role of localized deformation in hydrogen-assisted crack propagation in 21Cr-6Ni-9Mn stainless steel 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로