최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Physical chemistry chemical physics : PCCP, v.22 no.33, 2020년, pp.18526 - 18535
Na, Gyoung S. (Korea Research Institute of Chemical Technology (KRICT)) , Chang, Hyunju (Korea Research Institute of Chemical Technology (KRICT)) , Kim, Hyun Woo (Korea Research Institute of Chemical Technology (KRICT))
In chemistry-related fields, graph-based machine learning has received significant attention as atoms and their chemical bonds in a molecule can be represented as a mathematical graph. However, many molecular properties are sensitive to changes in the molecular structure. For this reason, molecules ...
Chem. Rev. Karelson 96 1027 1996 10.1021/cr950202r
Wiley Interdiscip. Rev.: Comput. Mol. Sci. Mitchell 4 468 2014
Adv. Funct. Mater. Pyzer-Knapp 25 6495 2015 10.1002/adfm.201501919
Chem. Sci. Wei 2 725 2016
Chem. Sci. Smith 8 3192 2017 10.1039/C6SC05720A
J. Phys. Chem. Lett. Dral 11 2336 2020 10.1021/acs.jpclett.9b03664
J. Chem. Phys. Behler 134 074106 2011 10.1063/1.3553717
Phys. Rev. B: Condens. Matter Mater. Phys. Bartók 87 184115 2013 10.1103/PhysRevB.87.184115
Phys. Rev. Lett. Rupp 108 058301 2012 10.1103/PhysRevLett.108.058301
J. Chem. Inf. Model. Peng 59 4993 2019 10.1021/acs.jcim.9b00732
Environ. Sci. Technol. Lett. Raza 6 624 2019 10.1021/acs.estlett.9b00476
Langer M. F. Langer , A.Goeßmann and M.Rupp , arXiv preprint arXiv:2003.12081, 2020
Mol. Inf. Rupp 29 266 2010 10.1002/minf.200900080
Chem. Sci. Wu 9 513 2018 10.1039/C7SC02664A
Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective Lu 2019 C. Lu , Q.Liu , C.Wang , Z.Huang , P.Lin and L.He , Molecular Property Prediction: A Multilevel Quantum Interactions Modeling Perspective , Association for the Advancement of Artificial Intelligence (AAAI) , 2019
J. Chem. Inf. Model. Na 60 1137 2020 10.1021/acs.jcim.9b00816
Chem. Sci. Coley 10 370 2019 10.1039/C8SC04228D
You J. You , B.Liu , R.Ying , V.Pande and J.Leskovec , Conference on Neural Information Processing Systems (NIPS), 2018
Phys. Rev. Lett. Xie 120 145301 2018 10.1103/PhysRevLett.120.145301
J. Med. Chem. Stumpfe 57 18 2014 10.1021/jm401120g
Mol. Pharmaceutics Hu 17 979 2020 10.1021/acs.molpharmaceut.9b01236
Zhou Z. Zhou , G.Cui , Z.Zhang , C.Yang , Z.Liu , L.Wang , C.Li and M.Sun , arXiv:1812.08434, 2018
Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning Li 2018 Q. Li , Z.Han and X.-M.Wu , Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning , Association for the Advancement of Artificial Intelligence (AAAI) , 2018
Wenlock M. Wenlock and N.Tomkinson , https://www.ebi.ac.uk/chembl/document_report_card/CHEMBL3301361/ , 2015
Kipf T. N. Kipf and M.Welling , International Conference on Learning Representations (ICLR), 2017
J. Mach. Learn. Res. van der Maaten 9 2579 2008
Schroff F. Schroff , D.Kalenichenko and J.Philbin , IEEE Conference on Compute Vision and Pattern Recognition (CVPR), 2015
Hadseel R. Hadseel , S.Chopra and Y.LeCun , IEEE Conference on Compute Vision and Pattern Recognition (CVPR), 2006
Weinberger K. Q. Weinberger , J.Blitzer and L. K.Saul , Conference on Neural Information Processing Systems (NIPS), 2006
Sohn K. Sohn , Conference on Neural Information Processing Systems (NIPS), 2016
Landrieu L. Landrieu and M.Boussaha , IEEE Conference on Computer Vision and Pattern Recognition, 2019
Kim S. Kim , M.Seo , I.Laptev , M.Cho and S.Kwak , IEEE Conference on Computer Vision and Pattern Recognition, 2019
Chem. Sci. Huang 7 3238 2019
Agarap A. F. Agarap , arXiv:1803.08375, 2018
Weinberger K. Q. Weinberger , J.Blitzer and L. K.Saul , Conference on Neural Information Processing Systems (NIPS), 2006
AIChE J. Kramer 37 233 1991 10.1002/aic.690370209
The Art of Computer Programming Donald 1998 K. Donald , The Art of Computer Programming , Addison-Wesley , 1998
Ghosh D. Ghosh , A.Rajeswaran , V.Kumar and S.Levine , International Conference on Learning Representations (ICLR) , 2018
Hsieh C.-J. Hsieh , S.Si and I. S.Dhillon , International Conference on Machine Learning (ICML), 2014
Chen T. Chen and C.Guestrin , ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), 2016
Classic Works of the Dempster-Shafer Theory of Belief Functions Denoeux 2008 T. Denoeux , Classic Works of the Dempster-Shafer Theory of Belief Functions , 2008 , pp. 737-760
J. Chem. Inf. Comput. Sci. Weininger 28 31 1988 10.1021/ci00057a005
J. Chem. Inf. Comput. Sci. Delaney 44 1000 2004 10.1021/ci034243x
J. Comput.-Aided Mol. Des. Mobley 28 711 2014 10.1007/s10822-014-9747-x
J. Am. Chem. Soc. Blum 131 8732 2009 10.1021/ja902302h
J. Chem. Inf. Model. Ruddigkeit 52 2864 2012 10.1021/ci300415d
Rev. Mod. Phys. Jones 87 897 2015 10.1103/RevModPhys.87.897
J. Chem. Inf. Model. Subramanian 56 1936 2016 10.1021/acs.jcim.6b00290
J. Chem. Inf. Model. Martins 52 1686 2012 10.1021/ci300124c
Duvenaud D. K. Duvenaud , D.Maclaurin , J.Iparraguirre , R.Bombarell , T.Hirzel , A.Aspuru-Guzik and R. P.Adams , Conference on Neural Information Processing Systems (NIPS) , 2015
Gilmer J. Gilmer , S. S.Schoenholz , P. F.Riley , O.Vinyals and G. E.Dahl , International Conference on Machine Learning (ICML), 2017
ChemMedChem Cho 14 1604 2019 10.1002/cmdc.201900458
Ioffe S. Ioffe and C.Szegedy , International Conference on Machine Learning (ICML), 2015
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.