$\require{mediawiki-texvc}$
  • 검색어에 아래의 연산자를 사용하시면 더 정확한 검색결과를 얻을 수 있습니다.
  • 검색연산자
검색연산자 기능 검색시 예
() 우선순위가 가장 높은 연산자 예1) (나노 (기계 | machine))
공백 두 개의 검색어(식)을 모두 포함하고 있는 문서 검색 예1) (나노 기계)
예2) 나노 장영실
| 두 개의 검색어(식) 중 하나 이상 포함하고 있는 문서 검색 예1) (줄기세포 | 면역)
예2) 줄기세포 | 장영실
! NOT 이후에 있는 검색어가 포함된 문서는 제외 예1) (황금 !백금)
예2) !image
* 검색어의 *란에 0개 이상의 임의의 문자가 포함된 문서 검색 예) semi*
"" 따옴표 내의 구문과 완전히 일치하는 문서만 검색 예) "Transform and Quantization"

논문 상세정보

Exploring event horizons and Hawking radiation through deformed graphene membranes

2d materials v.7 no.4 , 2020년, pp.041006 -   
초록이 없습니다.

참고문헌 (42)

  1. 1. HAWKING, S. W.. Black hole explosions?. Nature, vol.248, no.5443, 30-31.
  2. 2. Unruh, W. G.. Experimental Black-Hole Evaporation?. Physical review letters, vol.46, no.21, 1351-1353.
  3. 3. 1998 D58 Phys. Rev. Jacobson T A 
  4. 4. Garay, L. J., Anglin, J. R., Cirac, J. I., Zoller, P.. Sonic Analog of Gravitational Black Holes in Bose-Einstein Condensates. Physical review letters, vol.85, no.22, 4643-4647.
  5. 5. Barceló, Carlos, Liberati, Stefano, Visser, Matt. Towards the Observation of Hawking Radiation in Bose-Einstein Condensates. International journal of modern physics. A, Particles and fields, gravitation, cosmology, vol.18, no.21, 3735-3745.
  6. 6. Giovanazzi, S.. Hawking Radiation in Sonic Black Holes. Physical review letters, vol.94, no.6, 061302-.
  7. 7. Balbinot, Roberto, Fabbri, Alessandro, Fagnocchi, Serena, Recati, Alessio, Carusotto, Iacopo. Nonlocal density correlations as a signature of Hawking radiation from acoustic black holes. Physical review. A. Atomic, molecular, and optical physics, vol.78, no.2, 021603-.
  8. 8. 2008 10.1088/1367-2630/10/10/103001 10 1367-2630 New J. Phys. Carusotto I 
  9. 9. Macher, Jean, Parentani, Renaud. Black-hole radiation in Bose-Einstein condensates. Physical review. A. Atomic, molecular, and optical physics, vol.80, no.4, 043601-.
  10. 10. Recati, A., Pavloff, N., Carusotto, I.. Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates. Physical review. A. Atomic, molecular, and optical physics, vol.80, no.b4, 043603-.
  11. 11. Larré, P.-É., Recati, A., Carusotto, I., Pavloff, N.. Quantum fluctuations around black hole horizons in Bose-Einstein condensates. Physical review. A. Atomic, molecular, and optical physics, vol.85, no.1, 013621-.
  12. 12. 2015 D92 Phys. Rev. Steinhauer J 
  13. 13. 2019 S41567 0537 Nature Phys. Hu J 
  14. 14. Steinhauer, Jeff. Observation of quantum Hawking radiation and its entanglement in an analogue black hole. Nature physics, vol.12, no.10, 959-965.
  15. 15. Muñoz de Nova, Juan Ramón, Golubkov, Katrine, Kolobov, Victor I., Steinhauer, Jeff. Observation of thermal Hawking radiation and its temperature in an analogue black hole. Nature, vol.569, no.7758, 688-691.
  16. 16. 10.1038/s41578-018-0058-z 
  17. 17. Cvetic, M., Gibbons, G.. Graphene and the Zermelo optical metric of the BTZ black hole. Annals of physics, vol.327, no.11, 2617-2626.
  18. 18. González, J., Herrero, J.. Graphene wormholes: A condensed matter illustration of Dirac fermions in curved space. Nuclear physics, B, vol.825, no.3, 426-443.
  19. 19. Sachdev, Subir, Ye, Jinwu. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Physical review letters, vol.70, no.21, 3339-3342.
  20. 20. KITP Strings Seminar and Entanglement Program Kitaev A 
  21. 21. See Supplemental Materia1, which includes Refs. [27-36], for FIGS. 5 and 6 and for further information on: (i) Tiling the pseudosphere; (ii) Tight-binding parameter estimate; (iii) Kernel Polynomial Method; (iv) Tests of the LDOS calculations; (v) L 
  22. 22. Iorio, A., Lambiase, G.. The Hawking-Unruh phenomenon on graphene. Physics letters: B, vol.716, no.2, 334-337.
  23. 23. Iorio, Alfredo, Lambiase, Gaetano. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that. Physical review. D, Particles, fields, gravitation, and cosmology, vol.90, no.2, 025006-.
  24. 24. 2016 10.1088/0953-8984/28/13/13LT01 28 13LT01 0953-8984 J. Phys.: Condens. Matter. Taioli S 
  25. 25. Tatti, Roberta, Aversa, Lucrezia, Verucchi, Roberto, Cavaliere, Emanuele, Garberoglio, Giovanni, Pugno, Nicola M., Speranza, Giorgio, Taioli, Simone. Synthesis of single layer graphene on Cu(111) by C60 supersonic molecular beam epitaxy. RSC advances, vol.6, no.44, 37982-37993.
  26. 26. Taioli, Simone. Computational study of graphene growth on copper by first-principles and kinetic Monte Carlo calculations. Journal of molecular modeling, vol.20, no.7, 2260-.
  27. 27. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S., Geim, A. K.. The electronic properties of graphene. Reviews of modern physics, vol.81, no.1, 109-162.
  28. 28. 10.1017/9781108664462 
  29. 29. Schneider, M., Faria, D., Viola Kusminskiy, S., Sandler, N.. Local sublattice symmetry breaking for graphene with a centrosymmetric deformation. Physical review. B, Condensed matter and materials physics, vol.91, no.16, 161407-.
  30. 30. Gorbar, E.V., Gusynin, V.P.. Gap generation for Dirac fermions on Lobachevsky plane in a magnetic field. Annals of physics, vol.323, no.9, 2132-2146.
  31. 31. Koskinen, Pekka, Karppinen, Karoliina, Myllyperkiö, Pasi, Hiltunen, Vesa-Matti, Johansson, Andreas, Pettersson, Mika. Optically Forged Diffraction-Unlimited Ripples in Graphene. The journal of physical chemistry letters, vol.9, no.21, 6179-6184.
  32. 32. 2012 24 0953-8984 J. Phys.: Condens. Matter. Kumar A 
  33. 33. Wooten, F., Winer, K., Weaire, D.. Computer Generation of Structural Models of Amorphous Si and Ge. Physical review letters, vol.54, no.13, 1392-1395.
  34. 34. Bitzek, Erik, Koskinen, Pekka, Gähler, Franz, Moseler, Michael, Gumbsch, Peter. Structural Relaxation Made Simple. Physical review letters, vol.97, no.17, 170201-.
  35. 35. 1988 Gould H 
  36. 36. 2006 Computational studies of silicon interfaces and amorphous silica Alfthan S 
  37. 37. Slater, J. C., Koster, G. F.. Simplified LCAO Method for the Periodic Potential Problem. Physical review, vol.94, no.6, 1498-1524.
  38. 38. 10.1103/PhysRevLett.114.047403 
  39. 39. Stauber, T., Beltrán, J. I., Schliemann, J.. Tight-binding approach to penta-graphene. Scientific reports, vol.6, 22672-.
  40. 40. 2009 10.1088/0953-8984/21/39/395502 21 0953-8984 J. Phys.: Condens. Matter. Giannozzi P 
  41. 41. Weiße, Alexander, Wellein, Gerhard, Alvermann, Andreas, Fehske, Holger. The kernel polynomial method. Reviews of modern physics, vol.78, no.1, 275-306.
  42. 42. 2018 Fan Z 

DOI 인용 스타일

"" 핵심어 질의응답