$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry 원문보기

IEEE transactions on computational imaging, v.6, 2020년, pp.1127 - 1138  

Lim, Sungjun (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea) ,  Park, Hyoungjun (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea) ,  Lee, Sang-Eun (Seoul National University College of Medicine, Department of Physiology & Biomedical Sciences, Seoul, Republic of Korea) ,  Chang, Sunghoe (Seoul National University College of Medicine, Department of Physiology & Biomedical Sciences, Seoul, Republic of Korea) ,  Sim, Byeongsu (KAIST, Department of Mathematical Sciences, Daejeon, Republic of Korea) ,  Ye, Jong Chul (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

Deconvolution microscopy has been extensively used to improve the resolution of the wide-field fluorescent microscopy, but the performance of classical approaches critically depends on the accuracy of a model and optimization algorithms. Recently, the convolutional neural network (CNN) approaches ha...

참고문헌 (38)

  1. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.

  2. 10.1017/CBO9781139644181 

  3. KIRSHNER, H., AGUET, F., SAGE, D., UNSER, M.. 3‐D PSF fitting for fluorescence microscopy: implementation and localization application. Journal of microscopy, vol.249, no.1, 13-25.

  4. Sage, Daniel, Donati, Lauréne, Soulez, Ferréol, Fortun, Denis, Schmit, Guillaume, Seitz, Arne, Guiet, Romain, Vonesch, Cédric, Unser, Michael. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods, vol.115, 28-41.

  5. 10.1109/CVPR.2017.241 

  6. 10.1109/CVPR.2017.632 

  7. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  8. King, Sharon V., Yuan, Shuai, Preza, Chrysanthe. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise. Journal of biomedical optics, vol.23, no.3, 1-.

  9. Electromagn Diffraction Opt Syst II Structure of the Image Field in an Aplanatic System richards 1959 253 358 

  10. 10.1007/978-3-319-66185-8_15 

  11. Zelger, P., Kaser, K., Rossboth, B., Velas, L., Schütz, G. J., Jesacher, A.. Three-dimensional localization microscopy using deep learning. Optics express, vol.26, no.25, 33166-.

  12. Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 0 2672 

  13. Proc 34th Int Conf Mach Learn Wasserstein generative adversarial networks arjovsky 0 70 214 

  14. Optimal Transport Old and New villani 2008 338 

  15. Peyré, Gabriel, Cuturi, Marco. Computational Optimal Transport: With Applications to Data Science. Foundations and trends in machine learning, vol.11, no.5, 355-607.

  16. Nguyen, Thanh, Xue, Yujia, Li, Yunzhe, Tian, Lei, Nehmetallah, George. Deep learning approach for Fourier ptychography microscopy. Optics express, vol.26, no.20, 26470-.

  17. Pan, Jinshan, Dong, Jiangxin, Liu, Yang, Zhang, Jiawei, Ren, Jimmy, Tang, Jinhui, Tai, Yu-Wing, Yang, Ming-Hsuan. Physics-Based Generative Adversarial Models for Image Restoration and Beyond. IEEE transactions on pattern analysis and machine intelligence, vol.43, no.7, 2449-2462.

  18. 10.1109/ICCV.2017.244 

  19. Kang, Eunhee, Koo, Hyun Jung, Yang, Dong Hyun, Seo, Joon Bum, Ye, Jong Chul. Cycle‐consistent adversarial denoising network for multiphase coronary CT angiography. Medical physics, vol.46, no.2, 550-562.

  20. arXiv 1607 08022 Instance normalization: The missing ingredient for fast stylization ulyanov 2016 

  21. McNally, J.G., Karpova, T., Cooper, J., Conchello, J.A.. Three-Dimensional Imaging by Deconvolution Microscopy. Methods, vol.19, no.3, 373-385.

  22. Proc Int Conf Med Image Comput Comput -Assisted Intervention 3D U-Net: learning dense volumetric segmentation from sparse annotation çiçek 0 424 

  23. 10.1007/978-3-319-10485-0_3 

  24. Chan, T.F., Wong, Chiu-Kwong. Total variation blind deconvolution. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.7, no.3, 370-375.

  25. 10.1109/CVPR.2017.632 

  26. You, Yu-Li, Kaveh, M.. A regularization approach to joint blur identification and image restoration. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.5, no.3, 416-428.

  27. Rivenson, Yair, Göröcs, Zoltán, Günaydin, Harun, Zhang, Yibo, Wang, Hongda, Ozcan, Aydogan. Deep learning microscopy. Optica, vol.4, no.11, 1437-.

  28. Proc Adv Neural Inf Process Syst Deep convolutional neural network for image deconvolution xu 0 1790 

  29. IEEE Signal Process Mag Deconvolution methods for 3-D fluorescence microscopy images sarder 2006 10.1109/MSP.2006.1628876 23 32 

  30. Nehme, Elias, Weiss, Lucien E., Michaeli, Tomer, Shechtman, Yoav. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, vol.5, no.4, 458-.

  31. 10.1007/978-3-030-33843-5_16 

  32. 10.1007/978-3-030-01258-8_18 

  33. 10.1109/ISBI.2019.8759250 

  34. 10.1109/CVPRW.2018.00113 

  35. Schmitz, Morgan A., Heitz, Matthieu, Bonneel, Nicolas, Ngolè, Fred, Coeurjolly, David, Cuturi, Marco, Peyré, Gabriel, Starck, Jean-Luc. Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning. SIAM journal on imaging sciences, vol.11, no.1, 643-678.

  36. arXiv 1909 12116 Optimal transport, CycleGAN, and penalized LS for unsupervised learning in inverse problems sim 2019 

  37. 10.1109/ICCV.2017.304 

  38. Proc Adv Neural Inf Process Syst Improved training of Wasserstein Gans gulrajani 0 5767 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로