최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on computational imaging, v.6, 2020년, pp.1127 - 1138
Lim, Sungjun (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea) , Park, Hyoungjun (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea) , Lee, Sang-Eun (Seoul National University College of Medicine, Department of Physiology & Biomedical Sciences, Seoul, Republic of Korea) , Chang, Sunghoe (Seoul National University College of Medicine, Department of Physiology & Biomedical Sciences, Seoul, Republic of Korea) , Sim, Byeongsu (KAIST, Department of Mathematical Sciences, Daejeon, Republic of Korea) , Ye, Jong Chul (Korea Advanced Institute of Science and Technology (KAIST), Department of Bio and Brain Engineering, Daejeon, Republic of Korea)
Deconvolution microscopy has been extensively used to improve the resolution of the wide-field fluorescent microscopy, but the performance of classical approaches critically depends on the accuracy of a model and optimization algorithms. Recently, the convolutional neural network (CNN) approaches ha...
Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.
KIRSHNER, H., AGUET, F., SAGE, D., UNSER, M.. 3‐D PSF fitting for fluorescence microscopy: implementation and localization application. Journal of microscopy, vol.249, no.1, 13-25.
Sage, Daniel, Donati, Lauréne, Soulez, Ferréol, Fortun, Denis, Schmit, Guillaume, Seitz, Arne, Guiet, Romain, Vonesch, Cédric, Unser, Michael. DeconvolutionLab2: An open-source software for deconvolution microscopy. Methods, vol.115, 28-41.
arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014
King, Sharon V., Yuan, Shuai, Preza, Chrysanthe. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise. Journal of biomedical optics, vol.23, no.3, 1-.
Electromagn Diffraction Opt Syst II Structure of the Image Field in an Aplanatic System richards 1959 253 358
Zelger, P., Kaser, K., Rossboth, B., Velas, L., Schütz, G. J., Jesacher, A.. Three-dimensional localization microscopy using deep learning. Optics express, vol.26, no.25, 33166-.
Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 0 2672
Proc 34th Int Conf Mach Learn Wasserstein generative adversarial networks arjovsky 0 70 214
Optimal Transport Old and New villani 2008 338
Peyré, Gabriel, Cuturi, Marco. Computational Optimal Transport: With Applications to Data Science. Foundations and trends in machine learning, vol.11, no.5, 355-607.
Nguyen, Thanh, Xue, Yujia, Li, Yunzhe, Tian, Lei, Nehmetallah, George. Deep learning approach for Fourier ptychography microscopy. Optics express, vol.26, no.20, 26470-.
Pan, Jinshan, Dong, Jiangxin, Liu, Yang, Zhang, Jiawei, Ren, Jimmy, Tang, Jinhui, Tai, Yu-Wing, Yang, Ming-Hsuan. Physics-Based Generative Adversarial Models for Image Restoration and Beyond. IEEE transactions on pattern analysis and machine intelligence, vol.43, no.7, 2449-2462.
Kang, Eunhee, Koo, Hyun Jung, Yang, Dong Hyun, Seo, Joon Bum, Ye, Jong Chul. Cycle‐consistent adversarial denoising network for multiphase coronary CT angiography. Medical physics, vol.46, no.2, 550-562.
arXiv 1607 08022 Instance normalization: The missing ingredient for fast stylization ulyanov 2016
McNally, J.G., Karpova, T., Cooper, J., Conchello, J.A.. Three-Dimensional Imaging by Deconvolution Microscopy. Methods, vol.19, no.3, 373-385.
Proc Int Conf Med Image Comput Comput -Assisted Intervention 3D U-Net: learning dense volumetric segmentation from sparse annotation çiçek 0 424
Chan, T.F., Wong, Chiu-Kwong. Total variation blind deconvolution. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.7, no.3, 370-375.
You, Yu-Li, Kaveh, M.. A regularization approach to joint blur identification and image restoration. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.5, no.3, 416-428.
Rivenson, Yair, Göröcs, Zoltán, Günaydin, Harun, Zhang, Yibo, Wang, Hongda, Ozcan, Aydogan. Deep learning microscopy. Optica, vol.4, no.11, 1437-.
Proc Adv Neural Inf Process Syst Deep convolutional neural network for image deconvolution xu 0 1790
IEEE Signal Process Mag Deconvolution methods for 3-D fluorescence microscopy images sarder 2006 10.1109/MSP.2006.1628876 23 32
Nehme, Elias, Weiss, Lucien E., Michaeli, Tomer, Shechtman, Yoav. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica, vol.5, no.4, 458-.
Schmitz, Morgan A., Heitz, Matthieu, Bonneel, Nicolas, Ngolè, Fred, Coeurjolly, David, Cuturi, Marco, Peyré, Gabriel, Starck, Jean-Luc. Wasserstein Dictionary Learning: Optimal Transport-Based Unsupervised Nonlinear Dictionary Learning. SIAM journal on imaging sciences, vol.11, no.1, 643-678.
arXiv 1909 12116 Optimal transport, CycleGAN, and penalized LS for unsupervised learning in inverse problems sim 2019
Proc Adv Neural Inf Process Syst Improved training of Wasserstein Gans gulrajani 0 5767
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.