$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Unpaired Deep Learning for Accelerated MRI Using Optimal Transport Driven CycleGAN 원문보기

IEEE transactions on computational imaging, v.6, 2020년, pp.1285 - 1296  

Oh, Gyutaek (Korea Advanced Institute of Science, and Technology (KAIST), Department of Bio, and Brain Engineering, Daejeon, South Korea) ,  Sim, Byeongsu (Korea Advanced Institute of Science, and Technology (KAIST), Department of Mathematical Sciences, Daejeon, South Korea) ,  Chung, HyungJin (Korea Advanced Institute of Science, and Technology (KAIST), Department of Bio, and Brain Engineering, Daejeon, South Korea) ,  Sunwoo, Leonard (Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam, South Korea) ,  Ye, Jong Chul (Korea Advanced Institute of Science, and Technology (KAIST), Department of Bio, and Brain Engineering, Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Recently, deep learning approaches for accelerated MRI have been extensively studied thanks to their high performance reconstruction in spite of significantly reduced run-time complexity. These neural networks are usually trained in a supervised manner, so matched pairs of subsampled, and fully samp...

참고문헌 (47)

  1. Proc Int Conf Learn Represent Improving GANs using optimal transport salimans 0 

  2. Proc Int Conf Artif Intell Statist Learning generative models with sinkhorn divergences genevay 0 1608 

  3. Liang, Xiao, Chen, Liyuan, Nguyen, Dan, Zhou, Zhiguo, Gu, Xuejun, Yang, Ming, Wang, Jing, Jiang, Steve. Generating synthesized computed tomography (CT) from cone-beam computed tomography (CBCT) using CycleGAN for adaptive radiation therapy. Physics in medicine & biology, vol.64, no.12, 125002-.

  4. Kang, Eunhee, Koo, Hyun Jung, Yang, Dong Hyun, Seo, Joon Bum, Ye, Jong Chul. Cycle‐consistent adversarial denoising network for multiphase coronary CT angiography. Medical physics, vol.46, no.2, 550-562.

  5. 10.1109/ICCV.2017.244 

  6. Peyré, Gabriel, Cuturi, Marco. Computational Optimal Transport: With Applications to Data Science. Foundations and trends in machine learning, vol.11, no.5, 355-607.

  7. Deep de-aliasing for fast compressive sensing MRI yu 2017 

  8. Akçakaya, Mehmet, Moeller, Steen, Weingärtner, Sebastian, Uğurbil, Kâmil. Scan‐specific robust artificial‐neural‐networks for k‐space interpolation (RAKI) reconstruction: Database‐free deep learning for fast imaging. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.81, no.1, 439-453.

  9. Lim, Sungjun, Park, Hyoungjun, Lee, Sang-Eun, Chang, Sunghoe, Sim, Byeongsu, Ye, Jong Chul. CycleGAN With a Blur Kernel for Deconvolution Microscopy: Optimal Transport Geometry. IEEE transactions on computational imaging, vol.6, 1127-1138.

  10. SIAM J Imaging Sci Optimal transport, cycleGAN, and penalized ls for unsupervised learning in inverse problems sim 0 

  11. Hammernik, Kerstin, Klatzer, Teresa, Kobler, Erich, Recht, Michael P., Sodickson, Daniel K., Pock, Thomas, Knoll, Florian. Learning a variational network for reconstruction of accelerated MRI data. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.79, no.6, 3055-3071.

  12. Proc Int Conf Mach Learn Augmented cycleGAN: Learning many-to-many mappings from unpaired data almahairi 0 195 

  13. Lee, Dongwook, Yoo, Jaejun, Tak, Sungho, Ye, Jong Chul. Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks. IEEE transactions on bio-medical engineering, vol.65, no.9, 1985-1995.

  14. Schlemper, Jo, Caballero, Jose, Hajnal, Joseph V., Price, Anthony N., Rueckert, Daniel. A Deep Cascade of Convolutional Neural Networks for Dynamic MR Image Reconstruction. IEEE transactions on medical imaging, vol.37, no.2, 491-503.

  15. Zhu, Bo, Liu, Jeremiah Z., Cauley, Stephen F., Rosen, Bruce R., Rosen, Matthew S.. Image reconstruction by domain-transform manifold learning. Nature, vol.555, no.7697, 487-492.

  16. 10.1007/978-3-030-00928-1_34 

  17. Eo, Taejoon, Jun, Yohan, Kim, Taeseong, Jang, Jinseong, Lee, Ho‐Joon, Hwang, Dosik. KIKI‐net: cross‐domain convolutional neural networks for reconstructing undersampled magnetic resonance images. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.80, no.5, 2188-2201.

  18. IEEE Trans Med Imaging K-space deep learning for accelerated mri han 2019 

  19. Wang, Shanshan, Ke, Ziwen, Cheng, Huitao, Jia, Sen, Ying, Leslie, Zheng, Hairong, Liang, Dong. DIMENSION: Dynamic MR imaging with both k‐space and spatial prior knowledge obtained via multi‐supervised network training. NMR in biomedicine, vol.35, no.4, e4131-.

  20. Liu, Yiling, Liu, Qiegen, Zhang, Minghui, Yang, Qingxin, Wang, Shanshan, Liang, Dong. IFR-Net: Iterative Feature Refinement Network for Compressed Sensing MRI. IEEE transactions on computational imaging, vol.6, 434-446.

  21. Wang, Shanshan, Cheng, Huitao, Ying, Leslie, Xiao, Taohui, Ke, Ziwen, Zheng, Hairong, Liang, Dong. DeepcomplexMRI: Exploiting deep residual network for fast parallel MR imaging with complex convolution. Magnetic resonance imaging, vol.68, 136-147.

  22. Proc 34th Int Conf Mach Learn Wasserstein generative adversarial networks arjovsky 0 70 2147 

  23. Kyong Hwan Jin, Dongwook Lee, Jong Chul Ye. A General Framework for Compressed Sensing and Parallel MRI Using Annihilating Filter Based Low-Rank Hankel Matrix. IEEE transactions on computational imaging, vol.2, no.4, 480-495.

  24. Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 0 2672 

  25. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.. Compressed Sensing MRI [A look at how CS can improve on current imaging techniques]. IEEE signal processing magazine, vol.25, no.2, 72-82.

  26. Proc Int Conf Med Image Comput Comput -Assisted Int U-Net: Convolutional networks for biomedical image segmentation ronneberger 0 234 

  27. Optimal Transport Old and New villani 2008 338 

  28. Krizhevsky, Alex, Sutskever, Ilya, Hinton, Geoffrey E.. ImageNet classification with deep convolutional neural networks. Communications of the ACM, vol.60, no.6, 84-90.

  29. 10.1109/ISBI.2016.7493320 

  30. Chao Dong, Loy, Chen Change, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks. IEEE transactions on pattern analysis and machine intelligence, vol.38, no.2, 295-307.

  31. Donoho, D.L.. Compressed sensing. IEEE transactions on information theory, vol.52, no.4, 1289-1306.

  32. Han, Yoseob, Yoo, Jaejun, Kim, Hak Hee, Shin, Hee Jung, Sung, Kyunghyun, Ye, Jong Chul. Deep learning with domain adaptation for accelerated projection‐reconstruction MR. Magnetic resonance in medicine : official journal of the Society of Magnetic Resonance in Medicine, vol.80, no.3, 1189-1205.

  33. Candes, E.J., Romberg, J., Tao, T.. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE transactions on information theory, vol.52, no.2, 489-509.

  34. Instance normalization: The missing ingredient for fast stylization ulyanov 2016 

  35. End-to-end variational networks for accelerated MRI reconstruction sriram 2020 10.1007/978-3-030-59713-9_7 

  36. fastMRI: An open dataset and benchmarks for accelerated MRI zbontar 2018 

  37. Yang, Guang, Yu, Simiao, Dong, Hao, Slabaugh, Greg, Dragotti, Pier Luigi, Ye, Xujiong, Liu, Fangde, Arridge, Simon, Keegan, Jennifer, Guo, Yike, Firmin, David. DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction. IEEE transactions on medical imaging, vol.37, no.6, 1310-1321.

  38. 10.1109/CVPR.2017.632 

  39. Deep generative adversarial networks for compressed sensing automates MRI mardani 2017 

  40. 10.1109/CVPR.2017.300 

  41. 10.1007/978-3-030-00928-1_27 

  42. 10.1109/CVPRW.2018.00113 

  43. Quan, Tran Minh, Nguyen-Duc, Thanh, Jeong, Won-Ki. Compressed Sensing MRI Reconstruction Using a Generative Adversarial Network With a Cyclic Loss. IEEE transactions on medical imaging, vol.37, no.6, 1488-1497.

  44. Proc Adv Neural Inf Process Syst Improved training of Wasserstein GANs gulrajani 0 5767 

  45. 10.1117/12.2527753 

  46. Aggarwal, Hemant K., Mani, Merry P., Jacob, Mathews. MoDL: Model-Based Deep Learning Architecture for Inverse Problems. IEEE transactions on medical imaging, vol.38, no.2, 394-405.

  47. 10.1007/978-3-030-33843-5_5 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로