$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep Learning COVID-19 Features on CXR Using Limited Training Data Sets 원문보기

IEEE transactions on medical imaging, v.39 no.8, 2020년, pp.2688 - 2700  

Oh, Yujin (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Park, Sangjoon (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Ye, Jong Chul (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Under the global pandemic of COVID-19, the use of artificial intelligence to analyze chest X-ray (CXR) image for COVID-19 diagnosis and patient triage is becoming important. Unfortunately, due to the emergent nature of the COVID-19 pandemic, a systematic collection of CXR data set for deep neural ne...

참고문헌 (32)

  1. Proc Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) U-net: Convolutional networks for biomedical image segmentation ronneberger 2015 9351 234 

  2. Lobo Torres, Daliana, Queiroz Feitosa, Raul, Nigri Happ, Patrick, Elena Cué La Rosa, Laura, Marcato Junior, José, Martins, José, Olã Bressan, Patrik, Gonçalves, Wesley Nunes, Liesenberg, Veraldo. Applying Fully Convolutional Architectures for Semantic Segmentation of a Single Tree Species in Urban Environment on High Resolution UAV Optical Imagery. Sensors, vol.20, no.2, 563-.

  3. Thevarajan, Irani, Nguyen, Thi H. O., Koutsakos, Marios, Druce, Julian, Caly, Leon, van de Sandt, Carolien E., Jia, Xiaoxiao, Nicholson, Suellen, Catton, Mike, Cowie, Benjamin, Tong, Steven Y. C., Lewin, Sharon R., Kedzierska, Katherine. Breadth of concomitant immune responses prior to patient recovery: a case report of non-severe COVID-19. Nature medicine, vol.26, no.4, 453-455.

  4. Apostolopoulos, Ioannis D., Aznaouridis, Sokratis I., Tzani, Mpesiana A.. Extracting Possibly Representative COVID-19 Biomarkers from X-ray Images with Deep Learning Approach and Image Data Related to Pulmonary Diseases. Journal of medical and biological engineering, vol.40, no.3, 462-469.

  5. arXiv 2003 14395 COVID-ResNet: A deep learning framework for screening of COVID19 from radiographs farooq 2020 

  6. arXiv 2004 02696 COVID-CAPS: A capsule network-based framework for identification of COVID-19 cases from X-ray images afshar 2020 

  7. Salehi, Sana, Abedi, Aidin, Balakrishnan, Sudheer, Gholamrezanezhad, Ali. Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging Findings in 919 Patients. AJR : American journal of roentgenology, vol.215, no.1, 87-93.

  8. Selvaraju, Ramprasaath R., Cogswell, Michael, Das, Abhishek, Vedantam, Ramakrishna, Parikh, Devi, Batra, Dhruv. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. International journal of computer vision, vol.128, no.2, 336-359.

  9. 10.1109/CVPRW.2017.156 

  10. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  11. Proc NIPS Automatic differentiation in PyTorch paszke 2017 1 

  12. Soon Ho Yoon, Kyung Hee Lee, Jin Yong Kim, Young Kyung Lee, Hongseok Ko, Ki Hwan Kim, Chang Min Park, Yun-Hyeon Kim. Chest Radiographic and CT Findings of the 2019 Novel Coronavirus Disease (COVID-19): Analysis of Nine Patients Treated in Korea. Korean journal of radiology : official journal of the Korean Radiological Society, vol.21, no.4, 494-500.

  13. Shiraishi, Junji, Katsuragawa, Shigehiko, Ikezoe, Junpei, Matsumoto, Tsuneo, Kobayashi, Takeshi, Komatsu, Ken-ichi, Matsui, Mitate, Fujita, Hiroshi, Kodera, Yoshie, Doi, Kunio. Development of a Digital Image Database for Chest Radiographs With and Without a Lung Nodule : Receiver Operating Characteristic Analysis of Radiologists' Detection of Pulmonary Nodules. AJR : American journal of roentgenology, vol.174, no.1, 71-74.

  14. Communications in Computer and Information Science Public datasets and techniques for segmentation of anatomical structures from chest x-rays: Comparitive study, current trends and future directions jangam 2018 10.1007/978-981-13-9184-2_29 1036 321 

  15. Wong, Ho Yuen Frank, Lam, Hiu Yin Sonia, Fong, Ambrose Ho-Tung, Leung, Siu Ting, Chin, Thomas Wing-Yan, Lo, Christine Shing Yen, Lui, Macy Mei-Sze, Lee, Jonan Chun Yin, Chiu, Keith Wan-Hang, Chung, Tom Wai-Hin, Lee, Elaine Yuen Phin, Wan, Eric Yuk Fai, Hung, Ivan Fan Ngai, Lam, Tina Poy Wing, Kuo, Michael D., Ng, Ming-Yen. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology, vol.296, no.2, E72-E78.

  16. Candemir, Sema, Antani, Sameer. A review on lung boundary detection in chest X-rays. International journal of computer assisted radiology and surgery, vol.14, no.4, 563-576.

  17. Radiology Correlation of chest CT and RT-PCR testing in coronavirus disease 2019 (COVID-19) in China: A report of 1014 cases ai 2020 10.1148/radiol.2020200642 

  18. arXiv 2003 09871 COVID-net: A tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images wang 2020 

  19. Paul, Narinder S., Roberts, Heidi, Butany, Jagdish, Chung, TaeBong, Gold, Wayne, Mehta, Sangeeta, Konen, Eli, Rao, Anuradha, Provost, Yves, Hong, Harry H., Zelovitsky, Leon, Weisbrod, Gordon L.. Radiologic Pattern of Disease in Patients with Severe Acute Respiratory Syndrome: The Toronto Experience. Radiographics : a review publication of the Radiological Society of North America, Inc, vol.24, no.2, 553-563.

  20. Brown, Patricia D, Lerner, Stephen A. Community-acquired pneumonia. The Lancet, vol.352, no.9136, 1295-1302.

  21. Apostolopoulos, Ioannis D., Mpesiana, Tzani A.. Covid-19: automatic detection from X-ray images utilizing transfer learning with convolutional neural networks. Physical and engineering sciences in medicine, vol.43, no.2, 635-640.

  22. arXiv 2003 10849 Automatic detection of coronavirus disease (COVID-19) using X-ray images and deep convolutional neural networks narin 2020 

  23. Fang, Yicheng, Zhang, Huangqi, Xie, Jicheng, Lin, Minjie, Ying, Lingjun, Pang, Peipei, Ji, Wenbin. Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR. Radiology, vol.296, no.2, E115-E117.

  24. arXiv 2003 11055 COVIDX-net: A framework of deep learning classifiers to diagnose COVID-19 in X-ray images el-din hemdan 2020 

  25. Xie, Xingzhi, Zhong, Zheng, Zhao, Wei, Zheng, Chao, Wang, Fei, Liu, Jun. Chest CT for Typical Coronavirus Disease 2019 (COVID-19) Pneumonia: Relationship to Negative RT-PCR Testing. Radiology, vol.296, no.2, E41-E45.

  26. van Ginneken, Bram, Stegmann, Mikkel B., Loog, Marco. Segmentation of anatomical structures in chest radiographs using supervised methods: a comparative study on a public database. Medical image analysis, vol.10, no.1, 19-40.

  27. Corona Hack Chest X-Ray-Dataset 2020 

  28. Quant Imaging Med Surg Two public chest X-ray datasets for computer-aided screening of pulmonary diseases jaeger 2014 4 475 

  29. Kermany, Daniel S., Goldbaum, Michael, Cai, Wenjia, Valentim, Carolina C.S., Liang, Huiying, Baxter, Sally L., McKeown, Alex, Yang, Ge, Wu, Xiaokang, Yan, Fangbing, Dong, Justin, Prasadha, Made K., Pei, Jacqueline, Ting, Magdalene Y.L., Zhu, Jie, Li, Christina, Hewett, Sierra, Dong, Jason, Ziyar, Ian, Shi, Alexander, Zhang, Runze, Zheng, Lianghong, Hou, Rui, Shi, William, Fu, Xin, Duan, Yaou, Huu, Viet A.N., Wen, Cindy, Zhang, Edward D., Zhang, Charlotte L., Li, Oulan, Wang, Xiaobo, Singer, Michael A., Sun, Xiaodong, Xu, Jie, Tafreshi, Ali, Lewis, M. Anthony, Xia, Huimin, Zhang, Kang. Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning. Cell, vol.172, no.5, 1122-1131.e9.

  30. arXiv 2003 11597 COVID-19 image data collection paul cohen 2020 

  31. Dimopoulos, K., Giannakoulas, G., Bendayan, I., Liodakis, E., Petraco, R., Diller, G.P., Piepoli, M.F., Swan, L., Mullen, M., Best, N., Poole-Wilson, P.A., Francis, D.P., Rubens, M.B., Gatzoulis, M.A.. Cardiothoracic ratio from postero-anterior chest radiographs: A simple, reproducible and independent marker of disease severity and outcome in adults with congenital heart disease. International journal of cardiology, vol.166, no.2, 453-457.

  32. DANZER, C. SAUL. THE CARDIOTHORACIC RATIO : AN INDEX OF CARDIAC ENLARGEMENT. The American journal of the medical sciences, vol.157, no.4, 513-554.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로