$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Dynamic Displacement Estimation for Long-Span Bridges Using Acceleration and Heuristically Enhanced Displacement Measurements of Real-Time Kinematic Global Navigation System 원문보기

Sensors, v.20 no.18, 2020년, pp.5092 -   

Kim, Kiyoung (Research Center for Smart Submerged Floating Tunnel System, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea) ,  Sohn, Hoon (kiyoungkim@kaist.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

In this paper, we propose a dynamic displacement estimation method for large-scale civil infrastructures based on a two-stage Kalman filter and modified heuristic drift reduction method. When measuring displacement at large-scale infrastructures, a non-contact displacement sensor is placed on a limi...

Keyword

참고문헌 (29)

  1. 1. Kim K. Sohn H. Dynamic displacement estimation by fusing LDV and LiDAR measurements via smoothing based Kalman filtering Mech. Syst. Signal Process. 2017 82 339 355 10.1016/j.ymssp.2016.05.027 

  2. 2. Garg P. Moreu F. Ozdagli A. Taha M.R. Mascarenas D. Noncontact Dynamic Displacement Measurement of Structures Using a Moving Laser Doppler Vibrometer J. Bridg. Eng. 2019 24 04019089 10.1061/(ASCE)BE.1943-5592.0001472 

  3. 3. Joshi S. Harle S.M. Linear Variable Differential Transducer (LVDT) & Its Applications in Civil Engineering Int. J. Transp. Eng. Technol. 2017 3 62 10.11648/j.ijtet.20170304.13 

  4. 4. Nassif H.H. Gindy M. Davis J. Comparison of laser Doppler vibrometer with contact sensors for monitoring bridge deflection and vibration NDT E Int. 2005 38 213 218 10.1016/j.ndteint.2004.06.012 

  5. 5. Kim K. Kim J. Dynamic displacement measurement of a vibratory object using a terrestrial laser scanner Meas. Sci. Technol. 2015 26 045002 10.1088/0957-0233/26/4/045002 

  6. 6. Xiong C. Niu Y.B. Investigation of the Dynamic Behavior of a Super High-rise Structure using RTK-GNSS Technique KSCE J. Civ. Eng. 2019 23 654 665 10.1007/s12205-018-0238-9 

  7. 7. Niu Y.B. Xiong C. Analysis of the dynamic characteristics of a suspension bridge based on RTK-GNSS measurement combining EEMD and a wavelet packet technique Meas. Sci. Technol. 2018 29 085103 10.1088/1361-6501/aacb47 

  8. 8. Kaloop M.R. Li H. Monitoring of bridge deformation using GPS technique KSCE J. Civ. Eng. 2009 13 423 431 10.1007/s12205-009-0423-y 

  9. 9. Vazquez-Becerra G.E. Gaxiola-Camacho J.R. Bennett R. Guzman-Acevedo G.M. Gaxiola-Camacho I.E. Structural evaluation of dynamic and semi-static displacements of the Juarez Bridge using GPS technology Measurement 2017 110 146 153 10.1016/j.measurement.2017.06.026 

  10. 10. Guzman-Acevedo G.M. Vazquez-Becerra G.E. Millan-Almaraz J.R. Rodriguez-Lozoya H.E. Reyes-Salazar A. Gaxiola-Camacho J.R. Martinez-Felix C.A. GPS, Accelerometer, and Smartphone Fused Smart Sensor for SHM on Real-Scale Bridges Adv. Civ. Eng. 2019 2019 1 15 10.1155/2019/6429430 

  11. 11. Hofmann-Wellenhof B. Lichtenegger H. Collins J. Global Positioning System: Theory and Practice Springer Science & Business Media Berlin/Heidelberg, Germany 2012 

  12. 12. Dabove P. The usability of GNSS mass-market receivers for cadastral surveys considering RTK and NRTK techniques Geod. Geodyn. 2019 10 282 289 10.1016/j.geog.2019.04.006 

  13. 13. Klos A. Bogusz J. Figurski M. Kosek W. Noise analysis of continuous GPS time series of selected EPN stations to investigate variations in stability of monument types VIII Hotine-Marussi Symposium on Mathematical Geodesy Springer Berlin/Heidelberg, Germany 2015 19 26 

  14. 14. Sahmoudi M. Kouki A. Landry R. A new approach for mitigating carrier phase multipath errors in multi-gnss real-time kinematic (RTK) receivers Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing Dallas, TX, USA 15?19 March 2010 2486 3489 

  15. 15. Hannah B.M. Modelling and Simulation of GPS Multipath Propagation Queensland University of Technology Brisbane, Australia 2001 

  16. 16. Weill L.R. Conquering Multipath: The GPS Accuracy Battle GPS World Cleveland, OH, USA 1997 

  17. 17. Myung H. Lee H.-K. Choi K. Bang S. Mobile robot localization with gyroscope and constrained Kalman filter Int. J. Control. Autom. Syst. 2010 8 667 676 10.1007/s12555-010-0321-6 

  18. 18. Ghaleb F. Zainal A. Rassam M.A. Abraham A. Improved vehicle positioning algorithm using enhanced innovation-based adaptive Kalman filter Pervasive Mob. Comput. 2017 40 139 155 10.1016/j.pmcj.2017.06.008 

  19. 19. Reina G. Messina A. Vehicle dynamics estimation via augmented Extended Kalman Filtering Measurement 2019 133 383 395 10.1016/j.measurement.2018.10.030 

  20. 20. Zhao L. Qiu H. Feng Y. Analysis of a robust Kalman filter in loosely coupled GPS/INS navigation system Measurement 2016 80 138 147 10.1016/j.measurement.2015.11.008 

  21. 21. Crespillo O.G. Medina D. Skaloud J. Meurer M. Tightly coupled GNSS/INS integration based on robust M-estimators Proceedings of the 2018 IEEE/ION Position, Location and Navigation Symposium (PLANS) Monterey, CA, USA 23?26 April 2018 1554 1561 

  22. 22. Wang J. Liu D. Jiang W. Lu D. Evaluation on loosely and tightly coupled GNSS/INS vehicle navigation system Proceedings of the 2017 International Conference on Electromagnetics in Advanced Applications (ICEAA) Verona, Italy 11?15 September 2017 

  23. 23. Smyth A.W. Wu M. Multi-Rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring Mech. Syst. Signal Process. 2007 21 706 723 10.1016/j.ymssp.2006.03.005 

  24. 24. Kim J. Kim K. Sohn H. Autonomous dynamic displacement estimation from data fusion of acceleration and intermittent displacement measurements Mech. Syst. Signal Process. 2014 42 194 205 10.1016/j.ymssp.2013.09.014 

  25. 25. Kim K. Choi J. Koo G. Sohn H. Dynamic displacement estimation by fusing biased high-sampling rate acceleration and low-sampling rate displacement measurements using two-stage Kalman estimator Smart Struct. Syst. 2016 17 647 667 10.12989/sss.2016.17.4.647 

  26. 26. Hsieh C.-S. Robust two-stage Kalman filters for systems with unknown inputs IEEE Trans. Autom. Control 2000 45 2374 2378 10.1109/9.895577 

  27. 27. Borenstein J. Ojeda L. Heuristic Drift Elimination for Personnel Tracking Systems J. Navig. 2010 63 591 606 10.1017/S0373463310000184 

  28. 28. Ignagni M. An alternate derivation and extension of Friendland’s two-stage Kalman estimator IEEE Trans. Autom. Control 1981 26 746 750 10.1109/TAC.1981.1102697 

  29. 29. Kim K. Choi J. Chung J. Koo G. Bae I.-H. Sohn H. Structural displacement estimation through multi-rate fusion of accelerometer and RTK-GPS displacement and velocity measurements Measurement 2018 130 223 235 10.1016/j.measurement.2018.07.090 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로