$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Inverse‐direction Growth of TiO2 Microcones by Subsequent Anodization in HClO4 for Increased Performance of Lithium‐Ion Batteries

ChemElectroChem, v.7 no.5, 2020년, pp.1248 - 1255  

Kim, Yong‐Tae (Department of Chemistry and Chemical Engineering Inha University 22212 Incheon Republic of Korea) ,  Youk, Ji Ho (Department of Chemistry and Chemical Engineering Inha University 22212 Incheon Republic of Korea) ,  Choi, Jinsub (Department of Chemistry and Chemical Engineering Inha University 22212 Incheon Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractThe effect of second anodization on anodically fabricated TiO2 microcones is investigated with the aim of enhancing the lithium‐ion battery performances; these microcones are treated with a trace concentration of an electrolyte of HClO4. Unlike in the case of second anodization in H2S...

참고문헌 (26)

  1. Hu, Yong-Sheng, Guo, Yu-Guo, Sigle, Wilfried, Hore, Sarmimala, Balaya, Palani, Maier, Joachim. Electrochemical lithiation synthesis of nanoporous materials with superior catalytic and capacitive activity. Nature materials, vol.5, no.9, 713-717.

  2. Xing, Yalan, Wang, Shengbin, Fang, Baizeng, Song, Ge, Wilkinson, David P., Zhang, Shichao. N-doped hollow urchin-like anatase TiO2@C composite as a novel anode for Li-ion batteries. Journal of power sources, vol.385, 10-17.

  3. Yang, Zhao, Su, Danyang, Yang, Jinping, Wang, Jing. Fe3O4/C composite with hollow spheres in porous 3D-nanostructure as anode material for the lithium-ion batteries. Journal of power sources, vol.363, 161-167.

  4. Chang, Jingbo, Huang, Xingkang, Zhou, Guihua, Cui, Shumao, Hallac, Peter B., Jiang, Junwei, Hurley, Patrick T., Chen, Junhong. Multilayered Si Nanoparticle/Reduced Graphene Oxide Hybrid as a High‐Performance Lithium‐Ion Battery Anode. Advanced materials, vol.26, no.5, 758-764.

  5. Jiang, Jian, Li, Yuanyuan, Liu, Jinping, Huang, Xintang. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale, vol.3, no.1, 45-58.

  6. Wu, Hao Bin, Chen, Jun Song, Hng, Huey Hoon, Wen (David) Lou, Xiong. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale, vol.4, no.8, 2526-.

  7. Ortiz, Gregorio F., Hanzu, Ilie, Djenizian, Thierry, Lavela, Pedro, Tirado, José L., Knauth, Philippe. Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chemistry of materials : a publication of the American Chemical Society, vol.21, no.1, 63-67.

  8. Zhu, Guan-Nan, Wang, Yong-Gang, Xia, Yong-Yao. Ti-based compounds as anode materials for Li-ion batteries. Energy & environmental science, vol.5, no.5, 6652-6667.

  9. Bai, Y., Yan, D., Yu, C., Cao, L., Wang, C., Zhang, J., Zhu, H., Hu, Y.S., Dai, S., Lu, J., Zhang, W.. Core-shell Si@TiO2 nanosphere anode by atomic layer deposition for Li-ion batteries. Journal of power sources, vol.308, 75-82.

  10. Chen, Jun Song, Lou, Xiong Wen. Anatase TiO2 nanosheet: An ideal host structure for fast and efficient lithium insertion/extraction. Electrochemistry communications, vol.11, no.12, 2332-2335.

  11. Zhang, Wei, Zhou, Weidong, Wright, Jasper H., Kim, Young Nam, Liu, Dawei, Xiao, Xingcheng. Mn-Doped TiO2 Nanosheet-Based Spheres as Anode Materials for Lithium-Ion Batteries with High Performance at Elevated Temperatures. ACS applied materials & interfaces, vol.6, no.10, 7292-7300.

  12. He, Ben-Lin, Dong, Bin, Li, Hu-Lin. Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery. Electrochemistry communications, vol.9, no.3, 425-430.

  13. Bi, Z., Paranthaman, M.P., Menchhofer, P.A., Dehoff, R.R., Bridges, C.A., Chi, M., Guo, B., Sun, X.G., Dai, S.. Self-organized amorphous TiO2 nanotube arrays on porous Ti foam for rechargeable lithium and sodium ion batteries. Journal of power sources, vol.222, 461-466.

  14. Wang, Huanwen, Guan, Cao, Wang, Xuefeng, Fan, Hong Jin. A High Energy and Power Li‐Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small, vol.11, no.12, 1470-1477.

  15. Li, Zhaolin, Zhao, Hailei, Lv, Pengpeng, Zhang, Zijia, Zhang, Yang, Du, Zhihong, Teng, Yongqiang, Zhao, Lina, Zhu, Zhiming. Watermelon‐Like Structured SiOx–TiO2@C Nanocomposite as a High‐Performance Lithium‐Ion Battery Anode. Advanced functional materials, vol.28, no.31, 1605711-.

  16. Lu, Bing, Ma, Bingjie, Deng, Xinglan, Wu, Bing, Wu, Zhenyu, Luo, Jing, Wang, Xianyou, Chen, Gairong. Dual stabilized architecture of hollow Si@TiO2@C nanospheres as anode of high-performance Li-ion battery. Chemical engineering journal, vol.351, 269-279.

  17. Rhee, Oonhee, Lee, Gibaek, Choi, Jinsub. Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage. ACS applied materials & interfaces, vol.8, no.23, 14558-14563.

  18. Park, Jihyeon, Lee, Gibaek, Choi, Jinsub. Key Anodization Factors for Determining the Formation of TiO2 Microcones vs Nanotubes. Journal of the Electrochemical Society : JES, vol.164, no.9, D640-D644.

  19. Fahim, Narges F., Sekino, Tohru. A Novel Method for Synthesis of Titania Nanotube Powders using Rapid Breakdown Anodization. Chemistry of materials : a publication of the American Chemical Society, vol.21, no.9, 1967-1979.

  20. Su, Z., Zhang, L., Jiang, F., Hong, M.. Formation of crystalline TiO2 by anodic oxidation of titanium. Progress in natural science : communication of state key laboratories of China, vol.23, no.3, 294-301.

  21. Erdem, B., Hunsicker, R. A., Simmons, G. W., Sudol, E. D., Dimonie, V. L., El-Aasser, M. S.. XPS and FTIR Surface Characterization of TiO2 Particles Used in Polymer Encapsulation. Langmuir : the ACS journal of surfaces and colloids, vol.17, no.9, 2664-2669.

  22. Bhirud, Ashwini P., Sathaye, Shivaram D., Waichal, Rupali P., Ambekar, Jalindar D., Park, Chan-J., Kale, Bharat B.. In-situ preparation of N-TiO2/graphene nanocomposite and its enhanced photocatalytic hydrogen production by H2S splitting under solar light. Nanoscale, vol.7, no.11, 5023-5034.

  23. Zhang, Mengmeng, Wang, Chunrui, Li, Hui, Wang, Jiale, Li, Mai, Chen, Xiaoshuang. Enhanced performance of lithium ion batteries from self-doped TiO2 nanotube anodes via an adjustable electrochemical process. Electrochimica acta, vol.326, 134972-.

  24. Kavan, L., Kalbac, M., Zukalova, M., Exnar, I., Lorenzen, V., Nesper, R., Graetzel, M.. Lithium Storage in Nanostructured TiO2 Made by Hydrothermal Growth. Chemistry of materials : a publication of the American Chemical Society, vol.16, no.3, 477-485.

  25. Wang, Shitong, Quan, Wei, Zhu, Zhi, Yang, Yong, Liu, Qi, Ren, Yang, Zhang, Xiaoyi, Xu, Rui, Hong, Ye, Zhang, Zhongtai, Amine, Khalil, Tang, Zilong, Lu, Jun, Li, Ju. Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries. Nature communications, vol.8, no.1, 627-.

  26. Zhang, Yiqiong, Lu, Yanbing, Feng, Shi, Liu, Dongdong, Ma, Zhaoling, Wang, Shuangyin. On-site evolution of ultrafine ZnO nanoparticles from hollow metal-organic frameworks for advanced lithium ion battery anodes. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.43, 22512-22518.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로