최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Advanced energy materials, v.10 no.9, 2020년, pp.1903486 -
Marques Mota, Filipe (Department of Chemistry and Nano Science Division of Molecular and Life Sciences College of Natural Sciences Ewha Womans University 52, Ewhayeodae‐) , Kang, Jin‐Hyuk (gil, Seodaemun‐) , Jung, Younguk (gu Seoul 03760 Republic of Korea) , Park, Jiwon (Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐) , Na, Moony (ro, Yuseong‐) , Kim, Dong Ha (gu Daejeon 34141 Republic of Korea) , Byon, Hye Ryung (Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐)
AbstractReplacing oxygen (O2) with air is a critical step in the development of lithium (Li)-air batteries. A trace amount of carbon dioxide (CO2) in the air is, however, influentially involved in the O2 chemistry, which indicates that a fundamental understanding of the effect of CO2 is required for...
Lu, Yi-Chun, Gallant, Betar M., Kwabi, David G., Harding, Jonathon R., Mitchell, Robert R., Whittingham, M. Stanley, Shao-Horn, Yang. Lithium–oxygen batteries: bridging mechanistic understanding and battery performance. Energy & environmental science, vol.6, no.3, 750-768.
Luntz, Alan C., McCloskey, Bryan D.. Nonaqueous Li–Air Batteries: A Status Report. Chemical reviews, vol.114, no.23, 11721-11750.
Feng, Ningning, He, Ping, Zhou, Haoshen. Critical Challenges in Rechargeable Aprotic Li–O2 Batteries. Advanced energy materials, vol.6, no.9, 1502303-.
Semkow, Krystyna W., Sammells, Anthony F.. A Lithium Oxygen Secondary Battery. Journal of the Electrochemical Society : JES, vol.134, no.8, 2084-2085.
Girishkumar, G., McCloskey, B., Luntz, A. C., Swanson, S., Wilcke, W.. Lithium−Air Battery: Promise and Challenges. The journal of physical chemistry letters, vol.1, no.14, 2193-2203.
Grande, Lorenzo, Paillard, Elie, Hassoun, Jusef, Park, Jin‐Bum, Lee, Yung‐Jung, Sun, Yang‐Kook, Passerini, Stefano, Scrosati, Bruno. The Lithium/Air Battery: Still an Emerging System or a Practical Reality?. Advanced materials, vol.27, no.5, 784-800.
Hajra, M.G, Mehta, K, Chase, G.G. Effects of humidity, temperature, and nanofibers on drop coalescence in glass fiber media. Separation and purification technology, vol.30, no.1, 79-88.
Miguel, A.F. Effect of air humidity on the evolution of permeability and performance of a fibrous filter during loading with hygroscopic and non-hygroscopic particles. Journal of aerosol science, vol.34, no.6, 783-799.
Casper, Cheryl L., Stephens, Jean S., Tassi, Nancy G., Chase, D. Bruce, Rabolt, John F.. Controlling Surface Morphology of Electrospun Polystyrene Fibers: Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, vol.37, no.2, 573-578.
Zhao, Zhiwei, Huang, Jun, Peng, Zhangquan. Achilles’ Heel of Lithium–Air Batteries: Lithium Carbonate. Angewandte Chemie. international edition, vol.57, no.15, 3874-3886.
Guo, Ziyang, Li, Chao, Liu, Jingyuan, Wang, Yonggang, Xia, Yongyao. A Long‐Life Lithium–Air Battery in Ambient Air with a Polymer Electrolyte Containing a Redox Mediator. Angewandte Chemie. international edition, vol.56, no.26, 7505-7509.
Takechi, Kensuke, Shiga, Tohru, Asaoka, Takahiko. A Li–O2/CO2 battery. Chemical communications : Chem comm, vol.47, no.12, 3463-3465.
Qiao, Yu, Yi, Jin, Guo, Shaohua, Sun, Yang, Wu, Shichao, Liu, Xizheng, Yang, Sixie, He, Ping, Zhou, Haoshen. Li2CO3-free Li-O2/CO2 battery with peroxide discharge product. Energy & environmental science, vol.11, no.5, 1211-1217.
Lim, Hyung-Kyu, Lim, Hee-Dae, Park, Kyu-Young, Seo, Dong-Hwa, Gwon, Hyeokjo, Hong, Jihyun, Goddard, William A., Kim, Hyungjun, Kang, Kisuk. Toward a Lithium–“Air” Battery: The Effect of CO2 on the Chemistry of a Lithium–Oxygen Cell. Journal of the American Chemical Society, vol.135, no.26, 9733-9742.
Freunberger, Stefan A., Chen, Yuhui, Peng, Zhangquan, Griffin, John M., Hardwick, Laurence J., Bardé, Fanny, Novák, Petr, Bruce, Peter G.. Reactions in the Rechargeable Lithium–O2 Battery with Alkyl Carbonate Electrolytes. Journal of the American Chemical Society, vol.133, no.20, 8040-8047.
Chen, Yuhui, Freunberger, Stefan A., Peng, Zhangquan, Bardé, Fanny, Bruce, Peter G.. Li–O2 Battery with a Dimethylformamide Electrolyte. Journal of the American Chemical Society, vol.134, no.18, 7952-7957.
Ottakam Thotiyl, Muhammed M., Freunberger, Stefan A., Peng, Zhangquan, Bruce, Peter G.. The Carbon Electrode in Nonaqueous Li–O2 Cells. Journal of the American Chemical Society, vol.135, no.1, 494-500.
Itkis, Daniil M., Semenenko, Dmitry A., Kataev, Elmar Yu., Belova, Alina I., Neudachina, Vera S., Sirotina, Anna P., Hävecker, Michael, Teschner, Detre, Knop-Gericke, Axel, Dudin, Pavel, Barinov, Alexei, Goodilin, Eugene A., Shao-Horn, Yang, Yashina, Lada V.. Reactivity of Carbon in Lithium–Oxygen Battery Positive Electrodes. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.13, no.10, 4697-4701.
Hong, Misun, Choi, Hee Cheul, Byon, Hye Ryung. Nanoporous NiO Plates with a Unique Role for Promoted Oxidation of Carbonate and Carboxylate Species in the Li–O2 Battery. Chemistry of materials : a publication of the American Chemical Society, vol.27, no.6, 2234-2241.
Tan, P., Wei, Z. H., Shyy, W., Zhao, T. S., Zhu, X. B.. A nano-structured RuO2/NiO cathode enables the operation of non-aqueous lithium–air batteries in ambient air. Energy & environmental science, vol.9, no.5, 1783-1793.
Fan, Lijuan, Tang, Daichun, Wang, Deyu, Wang, Zhaoxiang, Chen, Liquan. LiCoO2-catalyzed electrochemical oxidation of Li2CO3. Nano research, vol.9, no.12, 3903-3913.
Song, Shidong, Xu, Wu, Zheng, Jianming, Luo, Langli, Engelhard, Mark H., Bowden, Mark E., Liu, Bin, Wang, Chong-Min, Zhang, Ji-Guang. Complete Decomposition of Li2CO3 in Li–O2 Batteries Using Ir/B4C as Noncarbon-Based Oxygen Electrode. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.17, no.3, 1417-1424.
Asadi, Mohammad, Sayahpour, Baharak, Abbasi, Pedram, Ngo, Anh T., Karis, Klas, Jokisaari, Jacob R., Liu, Cong, Narayanan, Badri, Gerard, Marc, Yasaei, Poya, Hu, Xuan, Mukherjee, Arijita, Lau, Kah Chun, Assary, Rajeev S., Khalili-Araghi, Fatemeh, Klie, Robert F., Curtiss, Larry A., Salehi-Khojin, Amin. A lithium–oxygen battery with a long cycle life in an air-like atmosphere. Nature, vol.555, no.7697, 502-506.
Wong, Raymond A., Yang, Chunzhen, Dutta, Arghya, O, Minho, Hong, Misun, Thomas, Morgan L., Yamanaka, Keisuke, Ohta, Toshiaki, Waki, Keiko, Byon, Hye Ryung. Critically Examining the Role of Nanocatalysts in Li-O2 Batteries: Viability toward Suppression of Recharge Overpotential, Rechargeability, and Cyclability. ACS energy letters, vol.3, no.3, 592-597.
Chen, Yuhui, Freunberger, Stefan A., Peng, Zhangquan, Fontaine, Olivier, Bruce, Peter G.. Charging a Li–O2 battery using a redox mediator. Nature chemistry, vol.5, no.6, 489-494.
Kwak, Won-Jin, Kim, Hun, Jung, Hun-Gi, Aurbach, Doron, Sun, Yang-Kook. Review—A Comparative Evaluation of Redox Mediators for Li-O2 Batteries: A Critical Review. Journal of the Electrochemical Society : JES, vol.165, no.10, A2274-A2293.
Laoire, Cormac Ó, Mukerjee, Sanjeev, Plichta, Edward J., Hendrickson, Mary A., Abraham, K. M.. Rechargeable Lithium/TEGDME-LiPF[sub 6]∕O[sub 2] Battery. Journal of the Electrochemical Society : JES, vol.158, no.3, A302-.
Li, Fujun, Zhang, Tao, Yamada, Yuki, Yamada, Atsuo, Zhou, Haoshen. Enhanced Cycling Performance of Li‐O2 Batteries by the Optimized Electrolyte Concentration of LiTFSA in Glymes. Advanced energy materials, vol.3, no.4, 532-538.
Feng, Shuting, Chen, Mao, Giordano, Livia, Huang, Mingjun, Zhang, Wenxu, Amanchukwu, Chibueze V., Anandakathir, Robinson, Shao-Horn, Yang, Johnson, Jeremiah A.. Mapping a stable solvent structure landscape for aprotic Li-air battery organic electrolytes. Journal of materials chemistry. A, Materials for energy and sustainability, vol.5, no.45, 23987-23998.
Mo, Yifei, Ong, Shyue Ping, Ceder, Gerbrand. First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery. Physical review. B, Condensed matter and materials physics, vol.84, no.20, 205446-.
Cho, Seol A., Jang, Yu Jin, Lim, Hee‐Dae, Lee, Ji‐Eun, Jang, Yoon Hee, Nguyen, Trang‐Thi Hong, Mota, Filipe Marques, Fenning, David P., Kang, Kisuk, Shao‐Horn, Yang, Kim, Dong Ha. Hierarchical Porous Carbonized Co3O4 Inverse Opals via Combined Block Copolymer and Colloid Templating as Bifunctional Electrocatalysts in Li-O2 Battery. Advanced energy materials, vol.7, no.21, 1700391-.
Freunberger, Stefan A., Chen, Yuhui, Drewett, Nicholas E., Hardwick, Laurence J., Bardé, Fanny, Bruce, Peter G.. The Lithium–Oxygen Battery with Ether‐Based Electrolytes. Angewandte Chemie. international edition, vol.50, no.37, 8609-8613.
Hayyan, Maan, Hashim, Mohd Ali, AlNashef, Inas M.. Superoxide Ion: Generation and Chemical Implications. Chemical reviews, vol.116, no.5, 3029-3085.
Burke, Colin M., Pande, Vikram, Khetan, Abhishek, Viswanathan, Venkatasubramanian, McCloskey, Bryan D.. Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li–O2 battery capacity. Proceedings of the National Academy of Sciences of the United States of America, vol.112, no.30, 9293-9298.
Sharon, Daniel, Hirsberg, Daniel, Afri, Michal, Chesneau, Frederick, Lavi, Ronit, Frimer, Aryeh A., Sun, Yang-Kook, Aurbach, Doron. Catalytic Behavior of Lithium Nitrate in Li-O2 Cells. ACS applied materials & interfaces, vol.7, no.30, 16590-16600.
Sharon, Daniel, Hirsberg, Daniel, Salama, Michael, Afri, Michal, Frimer, Aryeh A., Noked, Malachi, Kwak, Wonjin, Sun, Yang-Kook, Aurbach, Doron. Mechanistic Role of Li+ Dissociation Level in Aprotic Li–O2 Battery. ACS applied materials & interfaces, vol.8, no.8, 5300-5307.
Li, Fujun, Chen, Jun. Mechanistic Evolution of Aprotic Lithium‐Oxygen Batteries. Advanced energy materials, vol.7, no.24, 1602934-.
Johnson, Lee, Li, Chunmei, Liu, Zheng, Chen, Yuhui, Freunberger, Stefan A., Ashok, Praveen C., Praveen, Bavishna B., Dholakia, Kishan, Tarascon, Jean-Marie, Bruce, Peter G.. The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li–O2 batteries. Nature chemistry, vol.6, no.12, 1091-1099.
Mahne, Nika, Schafzahl, Bettina, Leypold, Christian, Leypold, Mario, Grumm, Sandra, Leitgeb, Anita, Strohmeier, Gernot A., Wilkening, Martin, Fontaine, Olivier, Kramer, Denis, Slugovc, Christian, Borisov, Sergey M., Freunberger, Stefan A.. Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries. Nature energy, vol.2, no.5, 17036-.
Hong, Misun, Yang, Chunzhen, Wong, Raymond A., Nakao, Aiko, Choi, Hee Cheul, Byon, Hye Ryung. Determining the Facile Routes for Oxygen Evolution Reaction by In Situ Probing of Li-O2 Cells with Conformal Li2O2 Films. Journal of the American Chemical Society, vol.140, no.20, 6190-6193.
Yang, Sixie, He, Ping, Zhou, Haoshen. Exploring the electrochemical reaction mechanism of carbonate oxidation in Li–air/CO2 battery through tracing missing oxygen. Energy & environmental science, vol.9, no.5, 1650-1654.
Brooker, M. H., Bates, John B.. Raman and Infrared Spectral Studies of Anhydrous Li2CO3 and Na2CO3. The Journal of chemical physics, vol.54, no.11, 4788-4796.
Bergner, Benjamin J., Schürmann, Adrian, Peppler, Klaus, Garsuch, Arnd, Janek, Jürgen. TEMPO: A Mobile Catalyst for Rechargeable Li-O2 Batteries. Journal of the American Chemical Society, vol.136, no.42, 15054-15064.
nstitute of Advanced Aerospace Technology, Seoul National University, Seoul 151‐742 (Republic of Korea), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA), Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX 75083‐0688 (USA). Superior Rechargeability and Efficiency of Lithium–Oxygen Batteries: Hierarchical Air Electrode Architecture Combined with a Soluble Catalyst. Angewandte Chemie. international edition, vol.53, no.15, 3926-3931.
Chen, Yuhui, Gao, Xiangwen, Johnson, Lee R., Bruce, Peter G.. Kinetics of lithium peroxide oxidation by redox mediators and consequences for the lithium–oxygen cell. Nature communications, vol.9, no.1, 767-.
Ko, Youngmin, Park, Hyeokjun, Lee, Byungju, Bae, Youngjoon, Park, Sung Kwan, Kang, Kisuk. A comparative kinetic study of redox mediators for high-power lithium-oxygen batteries. Journal of materials chemistry. A, Materials for energy and sustainability, vol.7, no.11, 6491-6498.
Zhang, Tao, Liao, Kaiming, He, Ping, Zhou, Haoshen. A self-defense redox mediator for efficient lithium–O2 batteries. Energy & environmental science, vol.9, no.3, 1024-1030.
Shi, Siqi, Qi, Yue, Li, Hong, Hector, Louis G.. Defect Thermodynamics and Diffusion Mechanisms in Li2CO3 and Implications for the Solid Electrolyte Interphase in Li-Ion Batteries. The journal of physical chemistry. C, Nanomaterials and Interfaces, vol.117, no.17, 8579-8593.
Linert, Wolfgang, Jameson, Reginald F., Taha, Ali. Donor numbers of anions in solution: the use of solvatochromic Lewis acid–base indicators. Journal of the Chemical Society. Dalton transactions, vol.1993, no.21, 3181-3186.
Evans, John Cyril, Lo, Grace Y. S.. Vibrational spectra of BrO-, BrO2-, Br3-, and Br5-. Inorganic chemistry, vol.6, no.8, 1483-1486.
Soulard, Michel, Bloc, François, Hatterer, André. Diagrams of existence of chloramines and bromamines in aqueous solution. Journal of the Chemical Society. Dalton transactions, vol.1981, no.12, 2300-2310.
Kumar, Krishan, Margerum, Dale W.. Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorganic chemistry, vol.26, no.16, 2706-2711.
Chen, Xiaoyun, Rickard, Mark A., Hull, John W., Zheng, Chao, Leugers, Anne, Simoncic, Petra. Raman Spectroscopic Investigation of Tetraethylammonium Polybromides. Inorganic chemistry, vol.49, no.19, 8684-8689.
Schnittke, A., Stegemann, H., Füllbier, H., Gabrusenoks, J.. Raman spectroscopic investigation of polybromide‐containing functional polymers. Journal of Raman spectroscopy : JRS, vol.22, no.11, 627-631.
Brouillette, Dany, Irish, Donald E., Taylor, Nicholas J., Perron, Gérald, Odziemkowski, Marek, Desnoyers, Jacques E.. Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy. Physical chemistry chemical physics : PCCP, vol.4, no.24, 6063-6071.
Easton, Max E., Ward, Antony J., Chan, Bun, Radom, Leo, Masters, Anthony F., Maschmeyer, Thomas. Factors influencing the formation of polybromide monoanions in solutions of ionic liquid bromide salts. Physical chemistry chemical physics : PCCP, vol.18, no.10, 7251-7260.
Anbar, M., Dostrovsky, I.. Ultra-violet absorption spectra of some organic hypohalites. Journal of the Chemical Society (Resumed), vol.1954, 1105-1108.
Bellucci, Giuseppe, Bianchini, Roberto, Chiappe, Cinzia, Ambrosetti, Roberto. The formation of pentabromide ions from bromine and bromide in moderate polarity aprotic solvents and their possible involvement in the product determining step of olefin. Journal of the American Chemical Society, vol.111, no.1, 199-202.
Kwak, Won-Jin, Hirshberg, Daniel, Sharon, Daniel, Afri, Michal, Frimer, Aryeh A., Jung, Hun-Gi, Aurbach, Doron, Sun, Yang-Kook. Li–O2 cells with LiBr as an electrolyte and a redox mediator. Energy & environmental science, vol.9, no.7, 2334-2345.
Kwak, Won‐Jin, Park, Seong‐Jin, Jung, Hun‐Gi, Sun, Yang‐Kook. Optimized Concentration of Redox Mediator and Surface Protection of Li Metal for Maintenance of High Energy Efficiency in Li-O2 Batteries. Advanced energy materials, vol.8, no.9, 1702258-.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.