$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Giant renormalization of dopant impurity levels in 2D semiconductor MoS 2 원문보기

Scientific reports, v.10, 2020년, pp.4938 -   

Hwang, Jeongwoon (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) ,  Zhang, Chenxi (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) ,  Kim, Yong-Sung (Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 Korea) ,  Wallace, Robert M. (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) ,  Cho, Kyeongjae (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA)

Abstract AI-Helper 아이콘AI-Helper

Substitutional doping in 2D semiconductor MoS2 was investigated by charge transition level (CTL) calculations for Nitrogen group (N, P, As, Sb) and Halogen group (F, Cl, Br, I) dopants at the S site of monolayer MoS2. Both n-type and p-type dopant levels are calculated to be deep mid-gap states (~1 ...

참고문헌 (37)

  1. 1. Salahuddin S Ni K Datta S The era of hyper-scaling in electronics Nat. Electron. 2018 1 442 450 10.1038/s41928-018-0117-x 

  2. 2. Kang M Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory Sci. Rep. 2015 5 12299 10.1038/srep12299 26201747 

  3. 3. Lee L ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors Nat. Commun. 2019 10 1998 10.1038/s41467-019-09998-x 31040277 

  4. 4. Mead C Neuromorphic electronic systems Proc. IEEE 1990 78 1629 1636 10.1109/5.58356 

  5. 5. Prezioso M Training and operation of an integrated neuromorphic network based on metal-oxide memristors Nature 2015 521 61 10.1038/nature14441 25951284 

  6. 6. National Academies of Sciences Engineering & Medicine. Quantum Computing: Progress and Prospects ., 10.17226/25196 (The National Academies Press, 2019). 

  7. 7. Komsa HP Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping Phys. Rev. Lett. 2012 109 1 5 10.1103/PhysRevLett.109.035503 

  8. 8. Dolui K Rungger I Das Pemmaraju C Sanvito S Possible doping strategies for MoS 2 monolayers: An ab initio study Phys. Rev. B - Condens. Matter Mater. Phys. 2013 88 1 9 10.1103/PhysRevB.88.075420 

  9. 9. Chen W Pasquarello A First-principles determination of defect energy levels through hybrid density functionals and GW J. Phys. Condens. Matter 2015 27 133202 10.1088/0953-8984/27/13/133202 25744104 

  10. 10. Komsa H-P Krasheninnikov AV Native defects in bulk and monolayer MoS 2 from first principles Phys. Rev. B 2015 91 125304 10.1103/PhysRevB.91.125304 

  11. 11. Noh JY Kim H Kim YS Stability and electronic structures of native defects in single-layer MoS 2 Phys. Rev. B - Condens. Matter Mater. Phys. 2014 89 1 12 10.1103/PhysRevB.89.205417 

  12. 12. Noh J-Y Kim H Park M Kim Y-S Deep-to-shallow level transition of Re and Nb dopants in monolayer ${\mathrm{MoS}}_{2}$ with dielectric environments Phys. Rev. B 2015 92 115431 10.1103/PhysRevB.92.115431 

  13. 13. Keldysh LV Keldysh L.V. - 1979 - Coulomb interaction in thin semiconductor and semimetal films.pdf Sov. J. Exp. Theor. Phys. Lett. 1979 29 658 

  14. 14. Peelaers H de Walle CG Effects of strain on band structure and effective masses in MoS${}_{2}$ Phys. Rev. B 2012 86 241401 10.1103/PhysRevB.86.241401 

  15. 15. Hwang J Zhang C Cho K Structural and electronic phase transitions of MoTe 2 induced by Li ionic gating 2D Mater. 2017 4 45012 10.1088/2053-1583/aa8802 

  16. 16. Mason, E. A. & McDaniel, E. W. Appendix III: Tables of Properties Useful in the Estimation of Ionneutral Interaction Energies. In Transport Properties of Ions in Gases 531?539, 10.1002/3527602852.app3 (Wiley-VCH Verlag GmbH & Co. KGaA, 2005). 

  17. 17. Hermanson J Phillips JC Pseudopotential Theory of Exciton and Impurity States Phys. Rev. 1966 150 652 660 10.1103/PhysRev.150.652 

  18. 18. Yang L Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS 2 Nano Lett. 2014 14 6275 6280 10.1021/nl502603d 25310177 

  19. 19. Nipane A Karmakar D Kaushik N Karande S Lodha S Few-Layer MoS 2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation ACS Nano 2016 10 2128 2137 10.1021/acsnano.5b06529 26789206 

  20. 20. Li S-L Tsukagoshi K Orgiu E Samori P Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors Chem. Soc. Rev. 2016 45 118 151 10.1039/C5CS00517E 26593874 

  21. 21. Azcatl A Covalent Nitrogen Doping and Compressive Strain in MoS 2 by Remote N2 Plasma Exposure Nano Lett. 2016 16 5437 5443 10.1021/acs.nanolett.6b01853 27494551 

  22. 22. Laskar MR p-type doping of MoS 2 thin films using Nb Appl. Phys. Lett. 2014 104 92104 10.1063/1.4867197 

  23. 23. Chernikov A Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer ${\mathrm{WS}}_{2}$ Phys. Rev. Lett. 2014 113 76802 10.1103/PhysRevLett.113.076802 

  24. 24. Ryou J Kim Y-S KC S Cho K Monolayer MoS 2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors Sci. Rep. 2016 6 29184 10.1038/srep29184 27378032 

  25. 25. Liu B Engineering Bandgaps of Monolayer MoS 2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many-Body Effects Adv. Mater. 2016 28 6457 6464 10.1002/adma.201504876 27184600 

  26. 26. Lin Y Dielectric Screening of Excitons and Trions in Single-Layer MoS 2 Nano Lett. 2014 14 5569 5576 10.1021/nl501988y 25216267 

  27. 27. Ceperley DM Alder BJ Ground state of the electron gas by a stochastic model Phys. Rev. Lett. 1980 45 566 569 10.1103/PhysRevLett.45.566 

  28. 28. Blochl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 17979 10.1103/PhysRevB.50.17953 

  29. 29. Kresse G Joubert D From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758 

  30. 30. Kresse G Furthmuller J Efficiency of ab initio total energy calculations for metals and semiconductors using a plane wave basis set Comput. Mat. Sci. 1996 6 15 10.1016/0927-0256(96)00008-0 

  31. 31. Kresse G Furthmuller J Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 10.1103/PhysRevB.54.11169 

  32. 32. Medeiros PVC Stafstrom S Bjork J Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding Phys. Rev. B - Condens. Matter Mater. Phys. 2014 89 41407 10.1103/PhysRevB.89.041407 

  33. 33. Hedstrom M Schindlmayr A Schwarz G Scheffler M Quasiparticle Corrections to the Electronic Properties of Anion Vacancies at GaAs(110) and InP(110) Phys. Rev. Lett. 2006 97 226401 10.1103/PhysRevLett.97.226401 17155819 

  34. 34. Jain M Chelikowsky JR Louie SG Quasiparticle Excitations and Charge Transition Levels of Oxygen Vacancies in Hafnia Phys. Rev. Lett. 2011 107 216803 10.1103/PhysRevLett.107.216803 22181908 

  35. 35. Deslippe J BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures Comput. Phys. Commun. 2012 183 1269 1289 10.1016/j.cpc.2011.12.006 

  36. 36. Ismail-Beigi S Truncation of periodic image interactions for confined systems Phys. Rev. B 2006 73 233103 10.1103/PhysRevB.73.233103 

  37. 37. Momma K Izumi F {\it VESTA3} for three-dimensional visualization of crystal, volumetric and morphology data J. Appl. Crystallogr. 2011 44 1272 1276 10.1107/S0021889811038970 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로