최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Scientific reports, v.10, 2020년, pp.4938 -
Hwang, Jeongwoon (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) , Zhang, Chenxi (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) , Kim, Yong-Sung (Korea Research Institute of Standards and Science, Yuseong, Daejeon 305-340 Korea) , Wallace, Robert M. (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA) , Cho, Kyeongjae (Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 USA)
Substitutional doping in 2D semiconductor MoS2 was investigated by charge transition level (CTL) calculations for Nitrogen group (N, P, As, Sb) and Halogen group (F, Cl, Br, I) dopants at the S site of monolayer MoS2. Both n-type and p-type dopant levels are calculated to be deep mid-gap states (~1 ...
1. Salahuddin S Ni K Datta S The era of hyper-scaling in electronics Nat. Electron. 2018 1 442 450 10.1038/s41928-018-0117-x
2. Kang M Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory Sci. Rep. 2015 5 12299 10.1038/srep12299 26201747
3. Lee L ZnO composite nanolayer with mobility edge quantization for multi-value logic transistors Nat. Commun. 2019 10 1998 10.1038/s41467-019-09998-x 31040277
4. Mead C Neuromorphic electronic systems Proc. IEEE 1990 78 1629 1636 10.1109/5.58356
5. Prezioso M Training and operation of an integrated neuromorphic network based on metal-oxide memristors Nature 2015 521 61 10.1038/nature14441 25951284
6. National Academies of Sciences Engineering & Medicine. Quantum Computing: Progress and Prospects ., 10.17226/25196 (The National Academies Press, 2019).
7. Komsa HP Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping Phys. Rev. Lett. 2012 109 1 5 10.1103/PhysRevLett.109.035503
8. Dolui K Rungger I Das Pemmaraju C Sanvito S Possible doping strategies for MoS 2 monolayers: An ab initio study Phys. Rev. B - Condens. Matter Mater. Phys. 2013 88 1 9 10.1103/PhysRevB.88.075420
9. Chen W Pasquarello A First-principles determination of defect energy levels through hybrid density functionals and GW J. Phys. Condens. Matter 2015 27 133202 10.1088/0953-8984/27/13/133202 25744104
10. Komsa H-P Krasheninnikov AV Native defects in bulk and monolayer MoS 2 from first principles Phys. Rev. B 2015 91 125304 10.1103/PhysRevB.91.125304
11. Noh JY Kim H Kim YS Stability and electronic structures of native defects in single-layer MoS 2 Phys. Rev. B - Condens. Matter Mater. Phys. 2014 89 1 12 10.1103/PhysRevB.89.205417
12. Noh J-Y Kim H Park M Kim Y-S Deep-to-shallow level transition of Re and Nb dopants in monolayer ${\mathrm{MoS}}_{2}$ with dielectric environments Phys. Rev. B 2015 92 115431 10.1103/PhysRevB.92.115431
13. Keldysh LV Keldysh L.V. - 1979 - Coulomb interaction in thin semiconductor and semimetal films.pdf Sov. J. Exp. Theor. Phys. Lett. 1979 29 658
14. Peelaers H de Walle CG Effects of strain on band structure and effective masses in MoS${}_{2}$ Phys. Rev. B 2012 86 241401 10.1103/PhysRevB.86.241401
15. Hwang J Zhang C Cho K Structural and electronic phase transitions of MoTe 2 induced by Li ionic gating 2D Mater. 2017 4 45012 10.1088/2053-1583/aa8802
16. Mason, E. A. & McDaniel, E. W. Appendix III: Tables of Properties Useful in the Estimation of Ionneutral Interaction Energies. In Transport Properties of Ions in Gases 531?539, 10.1002/3527602852.app3 (Wiley-VCH Verlag GmbH & Co. KGaA, 2005).
17. Hermanson J Phillips JC Pseudopotential Theory of Exciton and Impurity States Phys. Rev. 1966 150 652 660 10.1103/PhysRev.150.652
18. Yang L Chloride Molecular Doping Technique on 2D Materials: WS2 and MoS 2 Nano Lett. 2014 14 6275 6280 10.1021/nl502603d 25310177
19. Nipane A Karmakar D Kaushik N Karande S Lodha S Few-Layer MoS 2 p-Type Devices Enabled by Selective Doping Using Low Energy Phosphorus Implantation ACS Nano 2016 10 2128 2137 10.1021/acsnano.5b06529 26789206
20. Li S-L Tsukagoshi K Orgiu E Samori P Charge transport and mobility engineering in two-dimensional transition metal chalcogenide semiconductors Chem. Soc. Rev. 2016 45 118 151 10.1039/C5CS00517E 26593874
21. Azcatl A Covalent Nitrogen Doping and Compressive Strain in MoS 2 by Remote N2 Plasma Exposure Nano Lett. 2016 16 5437 5443 10.1021/acs.nanolett.6b01853 27494551
22. Laskar MR p-type doping of MoS 2 thin films using Nb Appl. Phys. Lett. 2014 104 92104 10.1063/1.4867197
23. Chernikov A Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer ${\mathrm{WS}}_{2}$ Phys. Rev. Lett. 2014 113 76802 10.1103/PhysRevLett.113.076802
24. Ryou J Kim Y-S KC S Cho K Monolayer MoS 2 Bandgap Modulation by Dielectric Environments and Tunable Bandgap Transistors Sci. Rep. 2016 6 29184 10.1038/srep29184 27378032
25. Liu B Engineering Bandgaps of Monolayer MoS 2 and WS2 on Fluoropolymer Substrates by Electrostatically Tuned Many-Body Effects Adv. Mater. 2016 28 6457 6464 10.1002/adma.201504876 27184600
26. Lin Y Dielectric Screening of Excitons and Trions in Single-Layer MoS 2 Nano Lett. 2014 14 5569 5576 10.1021/nl501988y 25216267
27. Ceperley DM Alder BJ Ground state of the electron gas by a stochastic model Phys. Rev. Lett. 1980 45 566 569 10.1103/PhysRevLett.45.566
28. Blochl PE Projector augmented-wave method Phys. Rev. B 1994 50 17953 17979 10.1103/PhysRevB.50.17953
29. Kresse G Joubert D From ultrasoft pseudopotentials to the projector augmented-wave method Phys. Rev. B 1999 59 1758 1775 10.1103/PhysRevB.59.1758
30. Kresse G Furthmuller J Efficiency of ab initio total energy calculations for metals and semiconductors using a plane wave basis set Comput. Mat. Sci. 1996 6 15 10.1016/0927-0256(96)00008-0
31. Kresse G Furthmuller J Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set Phys. Rev. B 1996 54 11169 11186 10.1103/PhysRevB.54.11169
32. Medeiros PVC Stafstrom S Bjork J Effects of extrinsic and intrinsic perturbations on the electronic structure of graphene: Retaining an effective primitive cell band structure by band unfolding Phys. Rev. B - Condens. Matter Mater. Phys. 2014 89 41407 10.1103/PhysRevB.89.041407
33. Hedstrom M Schindlmayr A Schwarz G Scheffler M Quasiparticle Corrections to the Electronic Properties of Anion Vacancies at GaAs(110) and InP(110) Phys. Rev. Lett. 2006 97 226401 10.1103/PhysRevLett.97.226401 17155819
34. Jain M Chelikowsky JR Louie SG Quasiparticle Excitations and Charge Transition Levels of Oxygen Vacancies in Hafnia Phys. Rev. Lett. 2011 107 216803 10.1103/PhysRevLett.107.216803 22181908
35. Deslippe J BerkeleyGW: A massively parallel computer package for the calculation of the quasiparticle and optical properties of materials and nanostructures Comput. Phys. Commun. 2012 183 1269 1289 10.1016/j.cpc.2011.12.006
36. Ismail-Beigi S Truncation of periodic image interactions for confined systems Phys. Rev. B 2006 73 233103 10.1103/PhysRevB.73.233103
37. Momma K Izumi F {\it VESTA3} for three-dimensional visualization of crystal, volumetric and morphology data J. Appl. Crystallogr. 2011 44 1272 1276 10.1107/S0021889811038970
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.