$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Preparation of Nanocomposite-Based High Performance Organic Field Effect Transistor via Solution Floating Method and Mechanical Property Evaluation 원문보기

Polymers, v.12 no.5, 2020년, pp.1046 -   

Kim, Youn (Carbon Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea) ,  Kwon, Yeon Ju (younkim@krict.re.kr (Y.K.)) ,  Ryu, Seungwan (kyj0905@krict.re.kr (Y.J.K.)) ,  Lee, Cheol Jin (skyzoop@krict.re.kr (S.R.)) ,  Lee, Jea Uk (Carbon Frontier Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Korea)

Abstract AI-Helper 아이콘AI-Helper

We demonstrate that using nanocomposite thin films consisting of semiconducting polymer, poly(3-hexylthiophene) (P3HT), and electrochemically exfoliated graphene (EEG) for the active channel layer of organic field-effect transistors (OFETs) improves both device performances and mechanical properties...

Keyword

참고문헌 (52)

  1. 1. Coropceanu V. Cornil J. da Silva Filho D.A. Olivier Y. Silbey R. Bredas J.-L. Charge transport in organic semiconductors Chem. Rev. 2007 107 926 952 10.1021/cr050140x 17378615 

  2. 2. Yang H. LeFevre S.W. Ryu C.Y. Bao Z. Solubility-driven thin film structures of regioregular poly (3-hexyl thiophene) using volatile solvents Appl. Phys. Lett. 2007 90 172116 10.1063/1.2734387 

  3. 3. Oh J.Y. Shin M. Lee T.I. Jang W.S. Lee Y.-J. Kim C.S. Kang J.-W. Myoung J.-M. Baik H.K. Jeong U. Highly bendable large-area printed bulk heterojunction film prepared by the self-seeded growth of poly (3-hexylthiophene) nanofibrils Macromolecules 2013 46 3534 3543 10.1021/ma4003165 

  4. 4. Lee M.Y. Hong J. Lee E.K. Yu H. Kim H. Lee J.U. Lee W. Oh J.H. Highly flexible organic nanofiber phototransistors fabricated on a textile composite for wearable photosensors Adv. Funct. Mater. 2016 26 1445 1453 10.1002/adfm.201503230 

  5. 5. Wu Y. Liu P. Ong B.S. Srikumar T. Zhao N. Botton G. Zhu S. Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors Appl. Phys. Lett. 2005 86 142102 10.1063/1.1894597 

  6. 6. Lei Y. Deng P. Zhang Q. Xiong Z. Li Q. Mai J. Lu X. Zhu X. Ong B.S. Hydrocarbons-driven crystallization of polymer semiconductors for low-temperature fabrication of high-performance organic field-effect transistors Adv. Funct. Mater. 2018 28 1706372 10.1002/adfm.201706372 

  7. 7. Wang G.-J.N. Molina-Lopez F. Zhang H. Xu J. Wu H.-C. Lopez J. Shaw L. Mun J. Zhang Q. Wang S. Nonhalogenated solvent processable and printable high-performance polymer semiconductor enabled by isomeric nonconjugated flexible linkers Macromolecules 2018 51 4976 4985 10.1021/acs.macromol.8b00971 

  8. 8. Fan X. Wang J. Wang H. Liu X. Wang H. Bendable ITO-free organic solar cells with highly conductive and flexible PEDOT: PSS electrodes on plastic substrates ACS Appl. Mater. Interfaces 2015 7 16287 16295 10.1021/acsami.5b02830 26159295 

  9. 9. Lipomi D.J. Tee B.C.K. Vosgueritchian M. Bao Z. Stretchable organic solar cells Adv. Mater. 2011 23 1771 1775 10.1002/adma.201004426 21491510 

  10. 10. Kim H.M. Kang H.W. Hwang D.K. Lim H.S. Ju B.K. Lim J.A. Metal?insulator?semiconductor coaxial microfibers based on self-organization of organic semiconductor: Polymer blend for weavable, fibriform organic field-effect transistors Adv. Funct. Mater. 2016 26 2706 2714 10.1002/adfm.201504972 

  11. 11. Kim W. Kwon S. Lee S.-M. Kim J.Y. Han Y. Kim E. Choi K.C. Park S. Park B.-C. Soft fabric-based flexible organic light-emitting diodes Org. Electron. 2013 14 3007 3013 10.1016/j.orgel.2013.09.001 

  12. 12. Song M. Seo J. Kim H. Kim Y. Flexible thermal sensors based on organic field-effect transistors with polymeric channel/gate-insulating and light-blocking layers ACS Omega 2017 2 4065 4070 10.1021/acsomega.7b00494 31457707 

  13. 13. Reese C. Roberts M. Ling M.-M. Bao Z. Organic thin film transistors Mater. Today 2004 7 20 27 10.1016/S1369-7021(04)00398-0 

  14. 14. Ling H. Liu S. Zheng Z. Yan F. Organic flexible electronics Small Methods 2018 2 1800070 10.1002/smtd.201800070 

  15. 15. Lim B. Long D.X. Han S.-Y. Nah Y.-C. Noh Y.-Y. Well-defined alternative polymer semiconductor using large size regioregular building blocks as monomers: Electrical and electrochemical properties J. Mater. Chem. C 2018 6 5662 5670 10.1039/C8TC00874D 

  16. 16. Lee J. Kang S.H. Lee S.M. Lee K.C. Yang H. Cho Y. Han D. Li Y. Lee B.H. Yang C. An ultrahigh mobility in isomorphic fluorobenzo [c][1, 2, 5] thiadiazole-based polymers Angew. Chem. 2018 130 13817 13822 10.1002/ange.201808098 

  17. 17. Liu S. Mannsfeld S.C. LeMieux M.C. Lee H.W. Bao Z. Organic semiconductor-carbon nanotube bundle bilayer field effect transistors with enhanced mobilities and high on/off ratios Appl. Phys. Lett. 2008 92 34 10.1063/1.2841033 

  18. 18. Novoselov K.S. Geim A.K. Morozov S. Jiang D. Katsnelson M.I. Grigorieva I. Dubonos S. Firsov A.A. Two-dimensional gas of massless Dirac fermions in graphene Nature 2005 438 197 200 10.1038/nature04233 16281030 

  19. 19. Park S. Ruoff R.S. Chemical methods for the production of graphenes Nat. Nanotechnol. 2009 4 217 10.1038/nnano.2009.58 19350030 

  20. 20. Geng J. Kong B.S. Yang S.B. Youn S.C. Park S. Joo T. Jung H.T. Effect of SWNT defects on the electron transfer properties in P3HT/SWNT hybrid materials Adv. Funct. Mater. 2008 18 2659 2665 10.1002/adfm.200800496 

  21. 21. Huang J. Hines D.R. Jung B.J. Bronsgeest M.S. Tunnell A. Ballarotto V. Katz H.E. Fuhrer M.S. Williams E.D. Cumings J. Polymeric semiconductor/graphene hybrid field-effect transistors Org. Electron. 2011 12 1471 1476 10.1016/j.orgel.2011.05.021 

  22. 22. Yoon K.H. Lee Y.S. Effects of multi-walled carbon nanotube and flow types on the electrical conductivity of polycarbonate/carbon nanotube nanocomposites Carbon Lett. 2019 29 57 63 

  23. 23. Gnidakouong J.R.N. Gao X. Kafy A. Kim J. Kim J.-H. Fabrication and electrical properties of regenerated cellulose-loaded exfoliated graphene nanoplatelet composites Carbon Lett. 2019 29 115 122 

  24. 24. Kwon Y.J. Kwon Y. Park H.S. Lee J.U. Mass-produced electrochemically exfoliated graphene for ultrahigh thermally conductive paper using a multimetal electrode system Adv. Mater. Interfaces 2019 6 1900095 10.1002/admi.201900095 

  25. 25. Vu D.-L. Kwon Y.J. Lee S.C. Lee J.U. Lee J.-W. Exfoliated graphene nanosheets as high-power anodes for lithium-ion batteries Carbon Lett. 2019 29 81 87 

  26. 26. Kim Y.-J. Park K. Jung H.-T. Ahn C.W. Jeon H.-J. Effects of solution annealing on the crystallinity and growth of conjugated polymer nanowires on a water substrate Cryst. Growth Des. 2018 18 1261 1266 10.1021/acs.cgd.7b01378 

  27. 27. Kim Y.J. Jung H.T. Ahn C.W. Jeon H.J. Simultaneously induced self-assembly of poly (3-hexylthiophene)(P3HT) nanowires and thin-film fabrication via solution-floating method on a water substrate Adv. Mater. Interfaces 2017 4 1700342 10.1002/admi.201700342 

  28. 28. Sirringhaus H. Tessler N. Friend R.H. Integrated optoelectronic devices based on conjugated polymers Science 1998 280 1741 1744 10.1126/science.280.5370.1741 9624049 

  29. 29. McCulloch I. Heeney M. Bailey C. Genevicius K. MacDonald I. Shkunov M. Sparrowe D. Tierney S. Wagner R. Zhang W. Liquid-crystalline semiconducting polymers with high charge-carrier mobility Nat. Mater. 2006 5 328 333 10.1038/nmat1612 16547518 

  30. 30. Savagatrup S. Makaram A.S. Burke D.J. Lipomi D.J. Mechanical properties of conjugated polymers and polymer-fullerene composites as a function of molecular structure Adv. Funct. Mater. 2014 24 1169 1181 10.1002/adfm.201302646 

  31. 31. Chung J.Y. Nolte A.J. Stafford C.M. Surface wrinkling: A versatile platform for measuring thin-film properties Adv. Mater. 2011 23 349 368 10.1002/adma.201001759 20814918 

  32. 32. Park M. Park J.-S. Han I.K. Oh J.Y. High-performance flexible and air-stable perovskite solar cells with a large active area based on poly (3-hexylthiophene) nanofibrils J. Mater. Chem. A 2016 4 11307 11316 10.1039/C6TA03164A 

  33. 33. Georgakilas V. Otyepka M. Bourlinos A.B. Chandra V. Kim N. Kemp K.C. Hobza P. Zboril R. Kim K.S. Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications Chem. Rev. 2012 112 6156 6214 10.1021/cr3000412 23009634 

  34. 34. Dreyer D.R. Park S. Bielawski C.W. Ruoff R.S. The chemistry of graphene oxide Chem. Soc. Rev. 2010 39 228 240 10.1039/B917103G 20023850 

  35. 35. Tiwari S. Singh A.K. Prakash R. Poly (3-hexylthiophene)(P3HT)/graphene nanocomposite material based organic field effect transistor with enhanced mobility J. Nanosci. Nanotechnol. 2014 14 2823 2828 10.1166/jnn.2014.8570 24734696 

  36. 36. Yadav A. Upadhyaya A. Gupta S.K. Verma A.S. Negi C.M.S. Poly-(3-hexylthiophene)/graphene composite based organic photodetectors: The influence of graphene insertion Thin Solid Film. 2019 675 128 135 10.1016/j.tsf.2019.02.013 

  37. 37. Zheng F. Yang X.-Y. Bi P.-Q. Niu M.-S. Lv C.-K. Feng L. Qin W. Wang Y.-Z. Hao X.-T. Ghiggino K.P. Poly (3-hexylthiophene) coated graphene oxide for improved performance of bulk heterojunction polymer solar cells Org. Electron. 2017 44 149 158 10.1016/j.orgel.2017.02.021 

  38. 38. Rodriquez D. Kim J.-H. Root S.E. Fei Z. Boufflet P. Heeney M. Kim T.-S. Lipomi D.J. Comparison of methods for determining the mechanical properties of semiconducting polymer films for stretchable electronics ACS Appl. Mater. Interfaces 2017 9 8855 8862 10.1021/acsami.6b16115 28220705 

  39. 39. Pandey R.K. Sahu P.K. Singh M.K. Prakash R. Fast grown self-assembled polythiophene/graphene oxide nanocomposite thin films at air?liquid interface with high mobility used in polymer thin film transistors J. Mater. Chem. C 2018 6 9981 9989 

  40. 40. Chen Y.-H. Huang P.-T. Lin K.-C. Huang Y.-J. Chen C.-T. Stabilization of poly (3-hexylthiophene)/PCBM morphology by hydroxyl group end-functionalized P3HT and its application to polymer solar cells Org. Electron. 2012 13 283 289 10.1016/j.orgel.2011.11.019 

  41. 41. Aissa B. Nedil M. Kroeger J. Ali A. Isaifan R.J. Essehli R. Mahmoud K.A. Graphene nanoplatelet doping of P3HT: PCBM photoactive layer of bulk heterojunction organic solar cells for enhancing performance Nanotechnology 2018 29 105405 10.1088/1361-6528/aaa62d 29384727 

  42. 42. Rodriquez D. Savagatrup S. Valle E. Proctor C.M. McDowell C. Bazan G.C. Nguyen T.-Q. Lipomi D.J. Mechanical properties of solution-processed small-molecule semiconductor films ACS Appl. Mater. Interfaces 2016 8 11649 11657 10.1021/acsami.6b02603 27093193 

  43. 43. Liscio A. Veronese G.P. Treossi E. Suriano F. Rossella F. Bellani V. Rizzoli R. Samori P. Palermo V. Charge transport in graphene?polythiophene blends as studied by Kelvin Probe Force Microscopy and transistor characterization J. Mater. Chem. 2011 21 2924 2931 10.1039/c0jm02940h 

  44. 44. Root S.E. Savagatrup S. Printz A.D. Rodriquez D. Lipomi D.J. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics Chem. Rev. 2017 117 6467 6499 10.1021/acs.chemrev.7b00003 28343389 

  45. 45. Stafford C.M. Harrison C. Beers K.L. Karim A. Amis E.J. VanLandingham M.R. Kim H.-C. Volksen W. Miller R.D. Simonyi E.E. A buckling-based metrology for measuring the elastic moduli of polymeric thin films Nat. Mater. 2004 3 545 550 10.1038/nmat1175 15247909 

  46. 46. Bowden N. Brittain S. Evans A.G. Hutchinson J.W. Whitesides G.M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer Nature 1998 393 146 149 10.1038/30193 

  47. 47. Bowden N. Huck W.T. Paul K.E. Whitesides G.M. The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer Appl. Phys. Lett. 1999 75 2557 2559 10.1063/1.125076 

  48. 48. Tahk D. Lee H.H. Khang D.-Y. Elastic moduli of organic electronic materials by the buckling method Macromolecules 2009 42 7079 7083 10.1021/ma900137k 

  49. 49. Lipomi D.J. Chong H. Vosgueritchian M. Mei J. Bao Z. Toward mechanically robust and intrinsically stretchable organic solar cells: Evolution of photovoltaic properties with tensile strain Sol. Energy Mater. Sol. Cells 2012 107 355 365 10.1016/j.solmat.2012.07.013 

  50. 50. Park S.I. Ahn J.H. Feng X. Wang S. Huang Y. Rogers J.A. Theoretical and experimental studies of bending of inorganic electronic materials on plastic substrates Adv. Funct. Mater. 2008 18 2673 2684 10.1002/adfm.200800306 

  51. 51. O‘Connor T.F. Zaretski A.V. Shiravi B.A. Savagatrup S. Printz A.D. Diaz M.I. Lipomi D.J. Stretching and conformal bonding of organic solar cells to hemispherical surfaces Energy Environ. Sci. 2014 7 370 378 10.1039/C3EE42898B 

  52. 52. Kim T. Kim J.-H. Kang T.E. Lee C. Kang H. Shin M. Wang C. Ma B. Jeong U. Kim T.-S. Flexible, highly efficient all-polymer solar cells Nat. Commun. 2015 6 1 7 10.1038/ncomms9547 26449658 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로