최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Polymers, v.12 no.10, 2020년, pp.2203 -
Yu, JunJie (Department of Nature-Inspired System and Application, Korea Institute of Machinery & Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Korea) , Lee, SuJeong (junjie0801@hotmail.com (J.Y.)) , Choi, Sunkyung (psa@kimm.re.kr (S.AP.)) , Kim, Kee K. (wdkim@kimm.re.kr (W.K.)) , Ryu, Bokyeong (Medical Device Convergence Center, Konyang University Hospital, 158 Gwanjedong-Ro, Seo-Gu, Daejeon 35365, Korea) , Kim, C-Yoon (sujeong12@gmail.com) , Jung, Cho-Rok (Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Min, Byoung-Hyun (eoslight@cnu.ac.kr (S.C.)) , Xin, Yuan-Zhu (kimkk@cnu.ac.kr (K.K.K.)) , Park, Su A (Department of Biochemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea) , Kim, Wandoo (eoslight@cnu.ac.kr (S.C.)) , Lee, Donghyun (kimkk@cnu.ac.kr (K.K.K.)) , Lee, JunHee (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea)
Osteochondral defects, including damage to both the articular cartilage and the subchondral bone, are challenging to repair. Although many technological advancements have been made in recent years, there are technical difficulties in the engineering of cartilage and bone layers, simultaneously. More...
1. Fai L.K. Cheah C. Chua C. Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs Biomaterials 2003 24 2363 2378 10.1016/s0142-9612(03)00030-9 12699674
2. Park J.Y. Choi Y.-J. Shim J.-H. Park J.H. Kim Y. Development of a 3D cell printed structure as an alternative to autologs cartilage for auricular reconstruction J. Biomed. Mater. Res. Part B Appl. Biomater. 2016 105 1016 1028 10.1002/jbm.b.33639 26922876
3. A Park S. Lee J.B. Kim Y.E. Kim J.E. Lee J.H. Shin J.-W. Kwon I.K. Kim W. Fabrication of biomimetic PCL scaffold using rapid prototyping for bone tissue engineering Macromol. Res. 2014 22 882 887 10.1007/s13233-014-2119-5
4. Peppas N.A. Hilt J.Z. Khademhosseini A. Langer R. Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology Adv. Mater. 2006 18 1345 1360 10.1002/adma.200501612
5. Duan B. Hockaday L.A. Kang K.H. Butcher J.T. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels J. Biomed. Mater. Res. Part A 2012 101 1255 1264 10.1002/jbm.a.34420
6. Rhee S. Puetzer J.L. Mason B.N. Reinhart-King C.A. Bonassar L.J. 3D Bioprinting of Spatially Heterogeneous Collagen Constructs for Cartilage Tissue Engineering ACS Biomater. Sci. Eng. 2016 2 1800 1805 10.1021/acsbiomaterials.6b00288
7. Ng W.L. Yeong W.Y. Naing M.W. Polyelectrolyte gelatin-chitosan hydrogel optimized for 3D bioprinting in skin tissue engineering Int. J. Bioprint. 2016 2 10.18063/IJB.2016.01.009
8. Axpe E. Oyen M.L. Applications of Alginate-Based Bioinks in 3D Bioprinting Int. J. Mol. Sci. 2016 17 1976 10.3390/ijms17121976
9. Freeman F.E. Kelly D.J. Tuning Alginate Bioink Stiffness and Composition for Controlled Growth Factor Delivery and to Spatially Direct MSC Fate within Bioprinted Tissues Sci. Rep. 2017 7 17042 10.1038/s41598-017-17286-1 29213126
10. Izadifar Z. Chang T. Kulyk W.M. Chen X. Eames B.F. Chen D. Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering Tissue Eng. Part C Methods 2016 22 173 188 10.1089/ten.tec.2015.0307 26592915
11. Kundu J. Shim J.-H. Jang J. Kim S.-W. Kim Y. An additive manufacturing-based PCL-alginate-chondrocyte bioprinted scaffold for cartilage tissue engineering J. Tissue Eng. Regen. Med. 2013 9 1286 1297 10.1002/term.1682 23349081
12. Shim J.-H. Lee J.-S. Kim J.-Y. Kim Y. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system J. Micromech. Microeng. 2012 22 10.1088/0960-1317/22/8/085014
13. Yeo M. Kim G. Cell-printed hierarchical scaffolds consisting of micro-sized polycaprolactone (PCL) and electrospun PCL nanofibers/cell-laden alginate struts for tissue regeneration J. Mater. Chem. B 2013 2 314 324 10.1039/C3TB21163K 32261510
14. Lee H. Ahn S. Bonassar L.J. Kim G. Cell(MC3T3-E1)-Printed Poly(?-caprolactone)/Alginate Hybrid Scaffolds for Tissue Regeneration Macromol. Rapid Commun. 2012 34 142 149 10.1002/marc.201200524 23059986
15. Shim J.-H. Jang K.-M. Hahn S.K. Park J.Y. Jung H. Oh K. Park K.M. Yeom J. Park S.H. Kim S.W. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint Biofabrication 2016 8 014102 10.1088/1758-5090/8/1/014102 26844597
16. Park J.Y. Choi J.-C. Shim J.-H. Lee J.-S. Park H. Kim S.W. Doh J. Kim Y. A comparative study on collagen type I and hyaluronic acid dependent cell behavior for osteochondral tissue bioprinting Biofabrication 2014 6 035004 10.1088/1758-5082/6/3/035004 24758832
17. Mahmoudifar N. Doran P.M. Osteogenic differentiation and osteochondral tissue engineering using human adipose-derived stem cells Biotechnol. Prog. 2012 29 176 185 10.1002/btpr.1663 23125060
18. Lin H. Lozito T.P. Alexander P.G. Gottardi R. Tuan R.S. Stem Cell-Based Microphysiological Osteochondral System to Model Tissue Response to Interleukin-1β Mol. Pharm. 2014 11 2203 2212 10.1021/mp500136b 24830762
19. Choi W.H. Kim H.R. Lee S.J. Jeong N. Park S.R. Choi B.H. Min B.-H. Fetal Cartilage-Derived Cells Have Stem Cell Properties and Are a Highly Potent Cell Source for Cartilage Regeneration Cell Transplant. 2016 25 449 461 10.3727/096368915X688641 26171766
20. Daley E.L. Kuttig J. Stegemann J.P. Development of Modular, Dual-Perfused Osteochondral Constructs for Cartilage Repair Tissue Eng. Part C Methods 2019 25 127 136 10.1089/ten.tec.2018.0356 30724134
21. Jin G.-Z. Kim J.-J. Park J.-H. Seo S.-J. Kim J.-H. Lee E.-J. Kim H.-W. Biphasic Nanofibrous Constructs with Seeded Cell Layers for Osteochondral Repair Tissue Eng. Part C Methods 2014 20 895 904 10.1089/ten.tec.2013.0521 24621213
22. Leclerc E. Sakai Y. Fujii T. Cell Culture in 3-Dimensional Microfluidic Structure of PDMS (polydimethylsiloxane) Biomed. Microdevices 2003 5 109 114 10.1023/A:1024583026925
23. Folch A. Toner M. Microengineering of Cellular Interactions Annu. Rev. Biomed. Eng. 2000 2 227 256 10.1146/annurev.bioeng.2.1.227 11701512
24. Kitahara S. Nakagawa K. Sah R.L. Wada Y. Ogawa T. Moriya H. Masuda K. In VivoMaturation of Scaffold-free Engineered Articular Cartilage on Hydroxyapatite Tissue Eng. Part A 2008 14 1905 1913 10.1089/ten.tea.2006.0419 18620479
25. Bhagat A.A.S. Jothimuthu P. Papautsky I. Photodefinable polydimethylsiloxane (PDMS) for rapid lab-on-a-chip prototyping Lab Chip 2007 7 1192 10.1039/b704946c 17713619
26. Yao H. Kang J. Li W. Liu J. Xie R. Wang D.-A. Liu S. Wang D.-A. Ren L. Novel β -TCP/PVA bilayered hydrogels with considerable physical and bio-functional properties for osteochondral repair Biomed. Mater. 2017 13 015012 10.1088/1748-605X/aa8541 28792423
27. Liao J. Tian T. Shi S. Xie X. Ma Q. Li G. Lin Y. The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair Bone Res. 2017 5 17018 10.1038/boneres.2017.18 28698817
28. Erickson A.E. Sun J. Levengood S.K.L. Swanson S. Chang F.-C. Tsao C.T. Zhang M. Chitosan-based composite bilayer scaffold as an in vitro osteochondral defect regeneration model Biomed. Microdevices 2019 21 34 10.1007/s10544-019-0373-1 30906951
29. Keogh M.B. O’Brien F.J. Daly J.S. A novel collagen scaffold supports human osteogenesis―Applications for bone tissue engineering Cell Tissue Res. 2010 340 169 177 10.1007/s00441-010-0939-y 20198386
30. Farea M. Husein A. Halim A.S. Abdullah N.A. Mokhtar K.I. Lim C.K. Berahim Z. Mokhtar K. Synergistic effects of chitosan scaffold and TGFβ1 on the proliferation and osteogenic differentiation of dental pulp stem cells derived from human exfoliated deciduous teeth Arch. Oral Boil. 2014 59 1400 1411 10.1016/j.archoralbio.2014.08.015
31. Kato H. Taguchi Y. Yamawaki I. Ruan Y. Wu Q. Chen Y.-C. Tsumori N. Nakata T. Noguchi M. Umeda M. Amelogenin Exon 5 Peptide Promotes Cell Proliferation and Osteogenic Differentiation in Human Dental Pulp Stem Cells Appl. Sci. 2019 9 4425 10.3390/app9204425
32. Yamada T. Matsukawa N. Matsumoto M. Morimoto S. Ogihara T. Ochi T. Yoshikawa H. Nampei A. Hashimoto J. Hayashida K. Matrix extracellular phosphoglycoprotein (MEPE) is highly expressed in osteocytes in human bone J. Bone Miner. Metab. 2004 22 176 184 10.1007/s00774-003-0468-9 15108058
33. Ruijtenberg S. Heuvel S.V.D. Coordinating cell proliferation and differentiation: Antagonism between cell cycle regulators and cell type-specific gene expression Cell Cycle 2016 15 196 212 10.1080/15384101.2015.1120925 26825227
34. Thorpe S.D. Buckley C.T. Vinardell T. O’Brien F.J. Campbell V.A. Kelly D.J. The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-β3 Induced Chondrogenic Differentiation Ann. Biomed. Eng. 2010 38 2896 2909 10.1007/s10439-010-0059-6 20458627
35. Bian L. Zhai D.Y. Tous E. Rai R. Mauck R.L. Burdick J.A. Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo Biomaterials 2011 32 6425 6434 10.1016/j.biomaterials.2011.05.033 21652067
36. Gan Y. Li S. Li P. Xu Y. Wang L. Zhao C. Ouyang B. Tu B. Zhang C. Luo L. A Controlled Release Codelivery System of MSCs Encapsulated in Dextran/Gelatin Hydrogel with TGF-β3-Loaded Nanoparticles for Nucleus Pulposus Regeneration Stem Cells Int. 2016 2016 1 14 10.1155/2016/9042019
37. Gheisari H. Karamian E. Abdellahi M. A novel hydroxyapatite ?Hardystonite nanocomposite ceramic Ceram. Int. 2015 41 5967 5975 10.1016/j.ceramint.2015.01.033
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.