$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Structural Characterization and Comparison of Monovalent Cation-Exchanged Zeolite-W 원문보기

Materials, v.13 no.17, 2020년, pp.3684 -   

Seoung, Donghoon (Department of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Korea) ,  Kim, Hyeonsu (dseoung@jnu.ac.kr (D.S.)) ,  Kim, Pyosang (197942@jnu.ac.kr (H.K.)) ,  Song, Chihyun (197944@jnu.ac.kr (P.K.)) ,  Lee, Suhyeong (Department of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Korea) ,  Chae, Sungmin (dseoung@jnu.ac.kr (D.S.)) ,  Lee, Sihyun (197942@jnu.ac.kr (H.K.)) ,  Lee, Hyunseung (197944@jnu.ac.kr (P.K.)) ,  Lee, Yongmoon (Department of Earth Systems and Environmental Sciences, Chonnam National University, Gwangju 61186, Korea)

Abstract AI-Helper 아이콘AI-Helper

We report comparative structural changes of potassium-contained zeolite-W (K-MER, structural analogue of natural zeolite merlinoite) and monovalent extra-framework cation (EFC)-exchanged M-MERs (M = Li+, Na+, Ag+, and Rb+). High-resolution synchrotron X-ray powder diffraction study precisely determi...

주제어

참고문헌 (29)

  1. 1. Liu P.S. Chen G.F. General Introduction to Porous Materials Porous Materials Liu P.S. Chen G.F. Butterworth-Heinemann Boston, UK 2014 

  2. 2. Tabacchi G. Supramolecular Organization in Confined Nanospaces ChemPhysChem 2018 19 1249 1297 10.1002/cphc.201701090 29573368 

  3. 3. Calzaferri G. Nanochannels: Hosts for the Supramolecular Organization of Molecules and Complexes Langmuir 2012 28 6216 6231 10.1021/la3000872 22372711 

  4. 4. Liu P.S. Chen G.F. Characterization Methods: Basic Factors Porous Materials Liu P.S. Chen G.F. Butterworth-Heinemann Boston, UK 2014 

  5. 5. Plank C.J. Rosinski E.J. Hawthorne W.P. Acidic Crystalline Aluminosilicates. New Superactive, Superselective Cracking Catalysts Ind. Eng. Chem. Prod. Res. Dev. 1964 3 165 169 10.1021/i360011a001 

  6. 6. Breck D.W. Zeolite Molecular Sieves: Strcuture, Chemistry, and Use John Wiley and Sons New York, NY, USA 1974 

  7. 7. Beyer H. Jacobs P.A. Uytterhoeven J.B. Redox behaviour of transition metal ions in zeolites. Part 2―Kinetic study of the reduction and reoxidation of silver-Y zeolites J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1976 72 674 685 10.1039/f19767200674 

  8. 8. Jacobs P.A. Uytterhoeven J.B. Beyer H.K. Redox behaviour of transition metal ions in zeolites. Part 6―Reversibility of the reduction reaction in silver zeolites J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1977 73 1755 1762 10.1039/f19777301755 

  9. 9. Ackley M.W. Application of natural zeolites in the purification and separation of gases Microporous Mesoporous Mater. 2003 61 25 42 10.1016/S1387-1811(03)00353-6 

  10. 10. Gatta G.D. Lee Y. Zeolites at high pressure: A review Miner. Mag. 2014 78 267 291 10.1180/minmag.2014.078.2.04 

  11. 11. Fee J.P.H. Murray J.M. Luney S.R. Molecular sieves: An alternative method of carbon dioxide removal which does not generate compound A during simulated low-flow sevoflurane anaesthesia Anaesthesia 1995 50 841 845 10.1111/j.1365-2044.1995.tb05847.x 7485870 

  12. 12. Segawa K. Shimura T. Effect of dealuminatation of mordenite catalyst for amination reaction of ethanoplamine A New Era of Catecholamines in the Laboratory and Clinic Elsevier BV Amsterdam, The Netherlands 2000 Volume 130 2975 2980 

  13. 13. Fujimoto K. Bischoff S. Omata K. Yagita H. Hydrogen effects on nickel-catalyzed vapor-phase methanol carbonylation J. Catal. 1992 133 370 382 10.1016/0021-9517(92)90247-F 

  14. 14. Altwasser S. Welker C. Traa Y. Weitkamp J. Catalytic cracking of n-octane on small-pore zeolites Microporous Mesoporous Mater. 2005 83 345 356 10.1016/j.micromeso.2005.04.028 

  15. 15. Baerlocher C. McCusker L.B. Olson D.H. Baerlocher C. Burton A.W. Baur W.H. Broach R.W. Dorset D.L. Fischer R.X. Gies H. Preface Atlas of Zeolite Framework Types Elsevier Science B.V. Amsterdam, The Netherlands 2007 

  16. 16. International Zeolite Association Available online: http://www.iza-structure.org/databases (accessed on 19 August 2020) 

  17. 17. Barrett P.A. Valencia S. Camblor M.A. Synthesis of a merlinoite-type zeolite with an enhanced Si/Al ratioviapore filling with tetraethylammonium cations J. Mater. Chem. 1998 8 2263 2268 10.1039/a803801e 

  18. 18. Quirin J.C. Yuen L. Zones S.I. Merlinoite synthesis studies with and without organocations J. Mater. Chem. 1997 7 2489 2494 10.1039/a704765g 

  19. 19. Bieniok A. Bornholdt K. Brendel U. Baur W.H. Synthesis and crystal structure of zeolite W, resembling the mineral merlinoite J. Mater. Chem. 1996 6 271 10.1039/jm9960600271 

  20. 20. Belhekar A. Chandwadkar A. Hegde S. Physicochemical characterization of a synthetic merlinoite (Linde W-like) zeolite containing Na, K, and Sr cations Zeolites 1995 15 535 539 10.1016/0144-2449(94)00067-3 

  21. 21. Chen W. Guo Q. Yang C. Hou J. Preparation of novel functional MER zeolite membrane for potassium continuous extraction from seawater J. Porous Mater. 2017 25 215 220 10.1007/s10934-017-0435-9 

  22. 22. Houlleberghs M. Breynaert E. Asselman K. Vaneeckhaute E. Radhakrishnan S. Anderson M.W. Taulelle F. Haouas M. Martens J.A. Kirschhock C.E.A. Evolution of the crystal growth mechanism of zeolite W (MER) with temperature Microporous Mesoporous Mater. 2019 274 379 384 10.1016/j.micromeso.2018.09.012 

  23. 23. Itabashi K. Ikeda T. Matsumoto A. Kamioka K. Kato M. Tsutsumi K. Syntheses and structural properties of four Rb-aluminosilicate zeolites Microporous Mesoporous Mater. 2008 114 495 506 10.1016/j.micromeso.2008.01.037 

  24. 24. Toby B.H. EXPGUI, a graphical user interface for GSAS J. Appl. Crystallogr. 2001 34 210 213 10.1107/S0021889801002242 

  25. 25. Thompson P. Cox D.E. Hastings J.B. Rietveld refinement of Debye?Scherrer synchrotron X-ray data from Al 2 O 3 J. Appl. Crystallogr. 1987 20 79 83 10.1107/S0021889887087090 

  26. 26. Larson A.C. VonDreele R.B. GSAS: General Structure Analysis System Report LAUR Los Alamos National Laboratory, LAUR Los Alamos, NM, USA 1986 86 748 

  27. 27. Rietveld H.M. A profile refinement method for nuclear and magnetic structures J. Appl. Crystallogr. 1969 2 65 71 10.1107/S0021889869006558 

  28. 28. Dollase W.A. Correction of intensities for preferred orientation in powder diffractometry: Application of the March model J. Appl. Crystallogr. 1986 19 267 272 10.1107/S0021889886089458 

  29. 29. Brown I.D. Altermatt D. Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database Acta Crystallogr. Sect. B Struct. Sci. 1985 41 244 247 10.1107/S0108768185002063 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로