최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Bioinformatics, v.36 no.7, 2020년, pp.2047 - 2052
Kim, Ha Young (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea) , Kim, Dongsup (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology , Daejeon 34141, Republic of Korea)
AbstractMotivationAccurate prediction of the effects of genetic variation is a major goal in biological research. Towards this goal, numerous machine learning models have been developed to learn information from evolutionary sequence data. The most effective method so far is a deep generative model ...
Nat. Methods Adzhubei 7 248 2010 10.1038/nmeth0410-248 A method and server for predicting damaging missense mutations
Nature Methods Alley 1 2019 Unified rational protein engineering with sequence-only deep representation learning
Trends Biotechnol Araya 29 435 2011 10.1016/j.tibtech.2011.04.003 Deep mutational scanning: assessing protein function on a massive scale
Bahdanau 2014
Bai 2018
Protein Sci Boucher 25 1219 2016 10.1002/pro.2928 Quantifying and understanding the fitness effects of protein mutations: laboratory versus nature
Chen 2017
Dauphin 933 2017
Phys. Rev. E Ekeberg 87 012707 2013 10.1103/PhysRevE.87.012707 Improved contact prediction in proteins: using pseudolikelihoods to infer Potts models
Mol. Biol. Evol Figliuzzi 33 268 2016 10.1093/molbev/msv211 Coevolutionary landscape inference and the context-dependence of mutations in beta-lactamase TEM-1
Nucleic Acids Res Finn 43 W30 2015 10.1093/nar/gkv397 HMMER web server: 2015 update
Nat. Methods Fowler 11 801 2014 10.1038/nmeth.3027 Deep mutational scanning: a new style of protein science
Gehring 2016
Gehring 2017
Germain 881 2015
Glorot 249 2010
Cell Syst Gray 6 116 2018 10.1016/j.cels.2017.11.003 Quantitative missense variant effect prediction using large-scale mutagenesis data
He 770 2016
BMC Genomics Hecht 16 S1 2015 10.1186/1471-2164-16-S8-S1 Better prediction of functional effects for sequence variants
Nat. Biotechnol Hopf 35 128 2017 10.1038/nbt.3769 Mutation effects predicted from sequence co-variation
Nat. Genet Huang 49 618 2017 10.1038/ng.3810 Fast, scalable prediction of deleterious noncoding variants from functional and population genomic data
Ioffe 2015
Kalchbrenner 2016
Nat. Genet Kircher 46 310 2014 10.1038/ng.2892 A general framework for estimating the relative pathogenicity of human genetic variants
Lapedes 2012
PLoS Comput. Biol Mann 10 e1003776 2014 10.1371/journal.pcbi.1003776 The fitness landscape of HIV-1 gag: advanced modeling approaches and validation of model predictions by in vitro testing
Nat. Rev. Genet Metzker 11 31 2010 10.1038/nrg2626 Sequencing technologies-the next generation
Nair 807 2010
Nucleic Acids Res Ng 31 3812 2003 10.1093/nar/gkg509 SIFT: predicting amino acid changes that affect protein function
PLoS One Niroula 10 e0117380 2015 10.1371/journal.pone.0117380 PON-P2: prediction method for fast and reliable identification of harmful variants
PLoS Comput. Biol Niroula 15 e1006481 2019 10.1371/journal.pcbi.1006481 How good are pathogenicity predictors in detecting benign variants?
Nat. Methods Riesselman 15 816 2018 10.1038/s41592-018-0138-4 Deep generative models of genetic variation capture the effects of mutations
Salimans 2017
Hum. Mutat Shihab 34 57 2013 10.1002/humu.22225 Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models
Sinai 2017
J. Mach. Learn. Res Srivastava 15 1929 2014 Dropout: a simple way to prevent neural networks from overfitting
J. Mach. Learn. Res Uria 17 7184 2016 Neural autoregressive distribution estimation
van den Oord 2016
CoRR Abs/1609.03499 van den Oord 2016 Wavenet: a generative model for raw audio
Adv. Neural Information Process. Syst van den Oord 4790 2016 Conditional image generation with pixelcnn decoders
BioMed Central Vihinen 13 S2 2012 How to evaluate performance of prediction methods? Measures and their interpretation in variation effect analysis. BMC genomics
Hum. Mutat Vihinen 34 275 2013 10.1002/humu.22253 Guidelines for reporting and using prediction tools for genetic variation analysis
Curr. Opin. Genet. Dev Weinreich 23 700 2013 10.1016/j.gde.2013.10.007 Should evolutionary geneticists worry about higher-order epistasis?
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.