$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Chondroitin Sulfate Prevents STZ Induced Diabetic Osteoporosis through Decreasing Blood Glucose, AntiOxidative Stress, Anti-Inflammation and OPG/RANKL Expression Regulation 원문보기

International journal of molecular sciences, v.21 no.15, 2020년, pp.5303 -   

Zheng, Hong Xing (College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China) ,  Chen, De Jing (cdjslg@126.com (D.J.C.)) ,  Zu, Yue Xin (jjlin1306@163.com (Y.X.Z.)) ,  Wang, En Zhu (a371505153@163.com (E.Z.W.)) ,  Qi, Shan Shan (College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China)

Abstract AI-Helper 아이콘AI-Helper

Chondroitin sulfate (CS) has antioxidative, anti-inflammatory, anti-osteoarthritic and hypoglycemic effects. However, whether it has antidiabetic osteoporosis effects has not been reported. Therefore, in this study, we established a STZ-induced diabetic rat model; CS (500 mg kg−1 d−1) ...

주제어

참고문헌 (50)

  1. 1. Sumida Y. Shima T. Mitsumoto Y. Katayama T. Umemura A. Yamaguchi K. Itoh Y. Yoneda M. Okanoue T. Epidemiology, pathogenesis, and diagnostic strategy of diabetic liver disease in Japan Int. J. Mol. Sci. 2020 21 4337 10.3390/ijms21124337 32570776 

  2. 2. Montagnani A. Gonnelli S. Alessandri M. Nuti R. Osteoporosis and risk of fracture in patients with diabetes: An update Aging Clin. Exp. Res. 2011 23 84 90 10.1007/BF03351073 21743287 

  3. 3. Qi S.S. He J. Han H. Zheng H.X. Hu Q.Y. Jiang H. Li X.S. Anthocyanin-Rich extract from black rice (Oryza sativa L. Japonica) ameliorates diabetic osteoporosis in rats Food Funct. 2019 10 5350 5360 10.1039/C9FO00681H 31393485 

  4. 4. Qi S.S. He J. Zheng H.X. Lan S.Q. Icariin prevents diabetes-induced bone loss in rats by reducing blood glucose and suppressing bone turnover Molecules 2019 24 1871 10.3390/molecules24101871 31096652 

  5. 5. Napoli N. Chandran M. Pierroz D. Abrahamsen B. Schwartz A.V. Ferrari S.L. Mechanisms of diabetes mellitus-induced bone fragility Nat. Rev. Endocrinol. 2017 13 208 219 10.1038/nrendo.2016.153 27658727 

  6. 6. Rathinavelu S. Guidry-Elizondo C. Banu J. Molecular modulation of osteoblasts and osteoclasts in type 2 diabetes J. Diabetes Res. 2018 2018 6354787 10.1155/2018/6354787 30525054 

  7. 7. Kalyanaraman H. Schwaerzer G. Ramdani G. Castillo F. Scott B.T. Dillmann W. Sah R.L. Casteel D.E. Pilz R.B. Protein kinase G activation reverses oxidative stress and restores osteoblast function and bone formation in male mice with type 1 diabetes Diabetes 2018 67 607 623 10.2337/db17-0965 29301852 

  8. 8. Guo C.J. Xie J.J. Hong R.H. Pan H.S. Zhang F.G. Liang Y.M. Puerarin alleviates streptozotocin (STZ)-induced osteoporosis in rats through suppressing inflammation and apoptosis via HDAC1/HDAC3 signaling Biomed. Pharmacother. 2019 115 108570 10.1016/j.biopha.2019.01.031 31054509 

  9. 9. Asadipooya K. Uy E.M. Advanced glycation end products (AGEs), receptor for AGEs, diabetes, and bone: Review of the literature J. Endocr. Soc. 2019 3 1799 1818 10.1210/js.2019-00160 31528827 

  10. 10. Kanazawa I. Interaction between bone and glucose metabolism Endocr. J. 2017 64 1043 1053 10.1507/endocrj.EJ17-0323 28966224 

  11. 11. Loi F. Cordova L.A. Pajarinen J. Lin T.H. Yao Z. Goodman S.B. Inflammation, fracture and bone repair Bone 2016 86 119 130 10.1016/j.bone.2016.02.020 26946132 

  12. 12. Rao S.S. Hu Y. Xie P.L. Omentin-1 prevents inflammation-induced osteoporosis by down-regulating the pro-inflammatory cytokines Bone Res. 2018 6 9 21 10.1038/s41413-018-0012-0 29619269 

  13. 13. Ginaldi L. De Martinis M. Osteoimmunology and beyond Curr. Med. Chem. 2016 23 3754 3774 10.2174/0929867323666160907162546 27604089 

  14. 14. De Martinis M. Sirufo M.M. Nocelli C. Fontanella L. Ginaldi L. Hyperhomocysteinemia is associated with inflammation, bone resorption, vitamin B12 and folate deficiency and MTHFR C677T polymorphism in postmenopausal women with decreased bone mineral density Int. J. Environ. Res. Public Health 2020 17 4260 10.3390/ijerph17124260 32549258 

  15. 15. Katayama Y. Naitoh M. Kubota H. Yamawaki S. Aya R. Ishiko T. Morimoto N. Chondroitin sulfate promotes the proliferation of keloid fibroblasts through activation of the integrin and protein kinase B pathways Int. J. Mol. Sci. 2020 21 1955 10.3390/ijms21061955 32182995 

  16. 16. Rani A. Patel S. Goyal A. Chondroitin sulfate (CS) lyases: Structure, function and application in therapeutics Curr. Protein Pept. Sci. 2018 19 22 33 10.2174/1389203718666170102112805 28049392 

  17. 17. Ju C. Hou L. Sun F. Zhang Z. Gao H. Wang L. Wang D. Lv Y. Zhao X. Anti-Oxidation and anti-apoptotic effects of chondroitin sulfate on 6-hydroxydopamine-induced injury through the up-regulation of Nrf2 and inhibition of mitochondria-mediated pathway Neurochem. Res. 2015 40 1509 1519 10.1007/s11064-015-1628-8 26033682 

  18. 18. Nagano F. Mizuno T. Mizumoto S. Yoshioka K. Takahashi K. Tsuboi N. Maruyama S. Yamada S. Nagamatsu T. Chondroitin sulfate protects vascular endothelial cells from toxicities of extracellular histones Eur. J. Pharmacol. 2018 826 48 55 10.1016/j.ejphar.2018.02.043 29501579 

  19. 19. Motoab M. Takamizawac N. Shibuyad T. Nakamurab A. Katsurayaa K. Katsuyuki K. Anti-Diabetic effects of chondroitin sulfate on normal and type 2 diabetic mice J. Funct. Foods 2018 40 336 340 

  20. 20. Gomes C.L.R. Leao C.L. Venturotti C. Barreira A.L. Guimaraes G. Fonseca R.S. Mourao P.A.S. Delgado A.G. Takiya C.M. Leite M. The protective role of fucosylated chondroitin sulfate, a distinct glycosaminoglycan, in a murine model of streptozotocin-induced diabetic nephropathy PLoS ONE 2014 9 e106929 10.1371/journal.pone.0106929 25192337 

  21. 21. Hu S. Chang Y. He M. Wang J. Wang Y. Xue C. Fucosylated chondroitin sulfate from sea cucumber improves insulin sensitivity via activation of PI3K/PKB pathway J. Food Sci. 2014 79 1424 1429 10.1111/1750-3841.12465 25041539 

  22. 22. Carnovali M. Luzi L. Banfi G. Mariotti M. Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model Endocrine 2016 54 808 817 10.1007/s12020-016-1106-3 27696252 

  23. 23. Jiang N. Xia W. Assessment of bone quality in patients with diabetes mellitus Osteoporos. Int. 2018 29 1721 1736 10.1007/s00198-018-4532-7 29736760 

  24. 24. Yamamoto M. Sugimoto T. Advanced glycation end products, diabetes, and bone strength Curr. Osteoporos. Rep. 2016 14 320 326 10.1007/s11914-016-0332-1 27704396 

  25. 25. De Martinis M. Ginaldi L. Sirufo M.M. Pioggia G. Calapai G. Gangemi S. Mannucci C. Alarmins in osteoporosis, RAGE, IL-1, and IL-33 pathways: A literature review Medicina (Kaunas) 2020 56 138 10.3390/medicina56030138 32204562 

  26. 26. Karstoft K. Pedersen B.K. Exercise and type 2 diabetes: Focus on metabolism and inflammation Immunol. Cell Biol. 2016 94 146 150 10.1038/icb.2015.101 26568029 

  27. 27. Marahleh A. Kitaura H. Ohori F. Fujita K. Kawabata T. Kozawa O. Otsuka T. TNF-α directly enhances osteocyte RANKL expression and promotes osteoclast formation Front Immunol. 2019 10 2925 10.3389/fimmu.2019.02925 31921183 

  28. 28. Wang T. He C. TNF-α and IL-6: The link between immune and bone system Curr. Drug Targets 2020 21 213 227 10.2174/1389450120666190821161259 31433756 

  29. 29. Shiratori T. Kyumoto-Nakamura Y. Kukita A. IL-1β induces pathologically activated osteoclasts bearing extremely high levels of resorbing activity: A possible pathological subpopulation of osteoclasts, accompanied by suppressed expression of kindlin-3 and talin-1 J. Immunol. 2018 200 218 228 10.4049/jimmunol.1602035 29141864 

  30. 30. Bacevic M. Brkovic B. Albert A. Rompen E. Radermecker R.P. Lambert F. Does oxidative stress play a role in altered characteristics of diabetic bone? A systematic review Calcif. Tissue Int. 2017 101 553 563 10.1007/s00223-017-0327-7 29063963 

  31. 31. Cheng Y.Z. Yang S.L. Wang J.Y. Irbesartan attenuates advanced glycation end products-mediated damage in diabetes-associated osteoporosis through the AGEs/RAGE pathway Life Sci. 2018 205 184 192 10.1016/j.lfs.2018.04.042 29702126 

  32. 32. Starup-Linde J. Eriksen S.A. Lykkeboe S. Handberg A. Vestergaard P. Biochemical markers of bone turnover in diabetes patients-A meta-analysis, and a methodological study on the effects of glucose on bone markers Osteoporos. Int. 2014 25 1697 1708 10.1007/s00198-014-2676-7 24676844 

  33. 33. Zheng H. Qi S.S. Chen C. Salidroside improves bone histomorphology and prevents bone loss in ovariectomized diabetic rats by upregulating the OPG/RANKL ratio Molecules 2018 23 2398 10.3390/molecules23092398 30235836 

  34. 34. Kovacs B. Vajda E. Nagy E.E. Regulatory effects and interactions of the Wnt and OPG-RANKL-RANK signaling at the bone-cartilage interface in osteoarthritis Int. J. Mol. Sci. 2019 20 4653 10.3390/ijms20184653 

  35. 35. Chen X. Wang Z. Duan N. Zhu G. Schwarz E.M. Xie C. Osteoblast-Osteoclast interactions Connect Tissue Res. 2018 59 99 107 10.1080/03008207.2017.1290085 28324674 

  36. 36. Conte A. Ghiraldini B. Casarin R.C. Impact of type 2 diabetes on the gene expression of bone-related factors at sites receiving dental implants Int. J. Oral Maxillofac. Surg. 2015 44 1302 1308 10.1016/j.ijom.2015.06.001 26112994 

  37. 37. Qi S.S. He J. Zheng H. Chen C. Jiang H. Lan S. Zinc supplementation increased bone mineral density, improves bone histomorphology, and prevents bone loss in diabetic rat Biol. Trace Elem. Res. 2020 194 493 501 10.1007/s12011-019-01810-7 31363990 

  38. 38. Yin Q. Wang J. Fu Q. Gu S. Rui Y. CircRUNX2 through has-miR-203 regulates RUNX2 to prevent osteoporosis J. Cell Mol. Med. 2018 22 6112 6121 10.1111/jcmm.13888 30324718 

  39. 39. Zhang X. Chen K. Wei B. Liu X. Lei Z. Bai X. Ginsenosides Rg3 attenuates glucocorticoid-induced osteoporosis through regulating BMP-2/BMPR1A/Runx2 signaling pathway Chem. Biol. Interact. 2016 256 188 197 10.1016/j.cbi.2016.07.003 27387537 

  40. 40. Adil M. Khan R.A. Kalam A. Venkata S.K. Kandhare A.D. Ghosh P. Sharma M. Effect of anti-diabetic drugs on bone metabolism: Evidence from preclinical and clinical studies Pharmacol. Rep. 2017 69 1328 1340 10.1016/j.pharep.2017.05.008 29132091 

  41. 41. Wang C. Meng H. Wang X. Zhao C. Peng J. Wang Y. Differentiation of bone marrow mesenchymal stem cells in osteoblasts and adipocytes and its role in treatment of osteoporosis Med. Sci. Monit. 2016 22 226 233 10.12659/MSM.897044 26795027 

  42. 42. Rivoira M. Rodriguez V. Picotto G. Battaglino R. Naringin prevents bone loss in a rat model of type 1 Diabetes mellitus Arch. Biochem. Biophys. 2018 637 56 63 10.1016/j.abb.2017.12.001 29208404 

  43. 43. Piccinin M.A. Khan Z.A. Pathophysiological role of enhanced bone marrow adipogenesis in diabetic complications Adipocytes 2014 3 263 272 10.4161/adip.32215 26317050 

  44. 44. Lin J.T. Ji B.Y. Zhang Y.C. Role of metformin on osteoblast differentiation in type 2 diabetes Biomed. Res. Int. 2019 2019 9203934 31886264 

  45. 45. Bahrambeigi S. Yousefi B. Rahimi M. Shafiei-Irannejad V. Metformin, an old antidiabetic drug with new potentials in bone disorders Biomed. Pharmacother. 2019 109 1593 1601 10.1016/j.biopha.2018.11.032 30551413 

  46. 46. Zheng L. Shen X. Ye J. Xie Y. Yan S. Metformin alleviates hyperglycemia-induced apoptosis and differentiation suppression in osteoblasts through inhibiting the TLR4 signaling pathway Life Sci. 2019 216 29 38 10.1016/j.lfs.2018.11.008 30414431 

  47. 47. Rani A. Baruah R. Goyal A. Physicochemical, antioxidant and biocompatible properties of chondroitin sulphate isolated from chicken keel bone for potential biomedical applications Carbohydr. Polym. 2017 159 11 19 10.1016/j.carbpol.2016.12.015 28038739 

  48. 48. Zou Z. Wei M. Fang J. Dai W. Sun T. Liu Q. Gong G. Liu Y. Song S. Ma F. Preparation of chondroitin sulfates with different molecular weights from bovine nasal cartilage and their antioxidant activities Int. J. Biol. Macromol. 2020 152 1047 1055 10.1016/j.ijbiomac.2019.10.192 31751707 

  49. 49. De Martinis M. Sirufo M.M. Ginaldi L. Osteoporosis: Current and emerging therapies targeted to immunological checkpoints Curr. Med. Chem. 2019 10.2174/0929867326666190730113123 

  50. 50. Revell P.A. Histomorphometry of bone J. Clin. Pathol. 1983 36 1323 1331 10.1136/jcp.36.12.1323 6361070 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로