$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Bacterial type III effector protein HopQ inhibits melanoma motility through autophagic degradation of vimentin 원문보기

Cell death & disease, v.11 no.4, 2020년, pp.231 -   

Park, Seung-Ho (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Yoon, Sung-Jin (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Choi, Song (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Kim, Jun-Seob (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Lee, Moo-Seung (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Lee, Seon-Jin (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Lee, Sang-Hyun (Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) ,  Min, Jeong-Ki (University of Science and Technology, Daejeon, Republic o) ,  Son, Mi-Young ,  Ryu, Choong-Min ,  Yoo, Jiyun ,  Park, Young-Jun

Abstract AI-Helper 아이콘AI-Helper

Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector pr...

참고문헌 (39)

  1. 1. Schadendorf D Hauschild A Melanoma in 2013: melanoma-the run of success continues Nat. Rev. Clin. Oncol. 2014 11 75 76 10.1038/nrclinonc.2013.246 24419300 

  2. 2. Heppt MV Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care BMC cancer 2017 17 536 10.1186/s12885-017-3529-5 28797232 

  3. 3. Pardoll DM The blockade of immune checkpoints in cancer immunotherapy Nat. Rev. Cancer 2012 12 252 264 10.1038/nrc3239 22437870 

  4. 4. Shi H Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy Cancer Discov. 2014 4 80 93 10.1158/2159-8290.CD-13-0642 24265155 

  5. 5. Tumeh PC PD-1 blockade induces responses by inhibiting adaptive immune resistance Nature 2014 515 568 571 10.1038/nature13954 25428505 

  6. 6. Wu JH Cohen DN Rady PL Tyring SK BRAF inhibitor-associated cutaneous squamous cell carcinoma: new mechanistic insight, emerging evidence for viral involvement and perspectives on clinical management Br. J. Dermatol. 2017 177 914 923 10.1111/bjd.15348 28129674 

  7. 7. Boller T He SY Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens Science 2009 324 742 744 10.1126/science.1171647 19423812 

  8. 8. Xin XF He SY Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants Annu. Rev. Phytopathol. 2013 51 473 498 10.1146/annurev-phyto-082712-102321 23725467 

  9. 9. Mudgett MB New insights to the function of phytopathogenic bacterial type III effectors in plants Annu. Rev. Plant Biol. 2005 56 509 531 10.1146/annurev.arplant.56.032604.144218 15862106 

  10. 10. Giska F Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae , creates a binding site for host 14-3-3 proteins Plant Physiol. 2013 161 2049 2061 10.1104/pp.112.209023 23396834 

  11. 11. Li W Yadeta KA Elmore JM Coaker G The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner Plant Physiol. 2013 161 2062 2074 10.1104/pp.112.211748 23417089 

  12. 12. Morrison DK The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development Trends Cell Biol. 2009 19 16 23 10.1016/j.tcb.2008.10.003 19027299 

  13. 13. Freeman AK Morrison DK 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression Semin. Cell Dev. Biol. 2011 22 681 687 10.1016/j.semcdb.2011.08.009 21884813 

  14. 14. Eriksson JE Introducing intermediate filaments: from discovery to disease J. Clin. Invest. 2009 119 1763 1771 10.1172/JCI38339 19587451 

  15. 15. Ivaska J Pallari HM Nevo J Eriksson JE Novel functions of vimentin in cell adhesion, migration, and signaling Exp. Cell Res. 2007 313 2050 2062 10.1016/j.yexcr.2007.03.040 17512929 

  16. 16. Wei J Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation Anticancer Res. 2008 28 327 334 18383865 

  17. 17. Fuyuhiro Y Clinical significance of vimentin-positive gastric cancer cells Anticancer Res. 2010 30 5239 5243 21187520 

  18. 18. Korsching E The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J. Pathol. 2005 206 451 457 10.1002/path.1797 15906273 

  19. 19. Kidd ME Shumaker DK Ridge KM The role of vimentin intermediate filaments in the progression of lung cancer AM J. Resp. Cell Mol. 2014 50 1 6 

  20. 20. Caselitz J Janner M Breitbart E Weber K Osborn M Malignant melanomas contain only the vimentin type of intermediate filaments Virchows Arch. 1983 400 43 51 10.1007/BF00627007 

  21. 21. Satelli A Li S Vimentin in cancer and its potential as a molecular target for cancer therapy Cell. Mol. Life Sci. 2011 68 3033 3046 10.1007/s00018-011-0735-1 21637948 

  22. 22. Li M A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis J. Exp. Clin. Canc. Res. 2010 29 109 10.1186/1756-9966-29-109 

  23. 23. Yoon SJ Pseudomonas syringae evades phagocytosis by animal cells via type III effector-mediated regulation of actin filament plasticity Environ. Microbiol. 2018 20 3980 3991 10.1111/1462-2920.14426 30251365 

  24. 24. Zhao L Zhang P Su XJ Zhang B The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin J. Cell Physiol. 2018 233 2420 2425 10.1002/jcp.26114 28771721 

  25. 25. Byun Y Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis Cell Death Differ. 2001 8 443 450 10.1038/sj.cdd.4400840 11423904 

  26. 26. Mizushima N Yoshimori T Levine B Methods in mammalian autophagy research Cell 2010 140 313 326 10.1016/j.cell.2010.01.028 20144757 

  27. 27. Gatica D Lahiri V Klionsky DJ Cargo recognition and degradation by selective autophagy Nat. Cell Biol. 2018 20 233 242 10.1038/s41556-018-0037-z 29476151 

  28. 28. Tan P TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10 PLoS Biol. 2018 16 e3000051 10.1371/journal.pbio.3000051 30408026 

  29. 29. Liu T TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy Cell Rep. 2016 16 1988 2002 10.1016/j.celrep.2016.07.019 27498865 

  30. 30. Zhou J NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses PLoS Genet. 2013 9 e1003196 10.1371/journal.pgen.1003196 23341779 

  31. 31. Liu Z Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression Cancer Cell. 2014 26 106 120 10.1016/j.ccr.2014.05.015 25026213 

  32. 32. Mandell MA TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition Dev. Cell. 2014 30 394 409 10.1016/j.devcel.2014.06.013 25127057 

  33. 33. Ustun S Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants Plant Cell. 2018 30 668 685 10.1105/tpc.17.00815 29500318 

  34. 34. Li SS p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis Carcinogenesis 2017 38 1092 1103 10.1093/carcin/bgx099 28968743 

  35. 35. Herrera Estrada L Padmore TJ Champion JA Bacterial effector nanoparticles as breast cancer therapeutics Mol. Pharm. 2016 13 710 719 10.1021/acs.molpharmaceut.5b00377 26800341 

  36. 36. Andor N Pan-cancer analysis of the extent and consequences of intratumor heterogeneity Nat. Med. 2016 22 105 113 10.1038/nm.3984 26618723 

  37. 37. Arozarena I Wellbrock C Phenotype plasticity as enabler of melanoma progression and therapy resistance Nat. Rev. Cancer 2019 19 377 391 10.1038/s41568-019-0154-4 31209265 

  38. 38. Gopalakrishnam V Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science 2018 359 97 103 10.1126/science.aan4236 29097493 

  39. 39. Matson V The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients Science 2018 359 104 108 10.1126/science.aao3290 29302014 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로