최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Cell death & disease, v.11 no.4, 2020년, pp.231 -
Park, Seung-Ho (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Yoon, Sung-Jin (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Choi, Song (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Kim, Jun-Seob (Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Lee, Moo-Seung (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Lee, Seon-Jin (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Lee, Sang-Hyun (Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea) , Min, Jeong-Ki (University of Science and Technology, Daejeon, Republic o) , Son, Mi-Young , Ryu, Choong-Min , Yoo, Jiyun , Park, Young-Jun
Malignant melanoma is a fatal disease that rapidly spreads to the whole body. Treatments have limited efficiency owing to drug resistance and various side effects. Pseudomonas syringae pv. tomato (Pto) is a model bacterial pathogen capable of systemic infection in plants. Pto injects the effector pr...
1. Schadendorf D Hauschild A Melanoma in 2013: melanoma-the run of success continues Nat. Rev. Clin. Oncol. 2014 11 75 76 10.1038/nrclinonc.2013.246 24419300
2. Heppt MV Prognostic significance of BRAF and NRAS mutations in melanoma: a German study from routine care BMC cancer 2017 17 536 10.1186/s12885-017-3529-5 28797232
3. Pardoll DM The blockade of immune checkpoints in cancer immunotherapy Nat. Rev. Cancer 2012 12 252 264 10.1038/nrc3239 22437870
4. Shi H Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy Cancer Discov. 2014 4 80 93 10.1158/2159-8290.CD-13-0642 24265155
5. Tumeh PC PD-1 blockade induces responses by inhibiting adaptive immune resistance Nature 2014 515 568 571 10.1038/nature13954 25428505
6. Wu JH Cohen DN Rady PL Tyring SK BRAF inhibitor-associated cutaneous squamous cell carcinoma: new mechanistic insight, emerging evidence for viral involvement and perspectives on clinical management Br. J. Dermatol. 2017 177 914 923 10.1111/bjd.15348 28129674
7. Boller T He SY Innate immunity in plants: an arms race between pattern recognition receptors in plants and effectors in microbial pathogens Science 2009 324 742 744 10.1126/science.1171647 19423812
8. Xin XF He SY Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants Annu. Rev. Phytopathol. 2013 51 473 498 10.1146/annurev-phyto-082712-102321 23725467
9. Mudgett MB New insights to the function of phytopathogenic bacterial type III effectors in plants Annu. Rev. Plant Biol. 2005 56 509 531 10.1146/annurev.arplant.56.032604.144218 15862106
10. Giska F Phosphorylation of HopQ1, a type III effector from Pseudomonas syringae , creates a binding site for host 14-3-3 proteins Plant Physiol. 2013 161 2049 2061 10.1104/pp.112.209023 23396834
11. Li W Yadeta KA Elmore JM Coaker G The Pseudomonas syringae effector HopQ1 promotes bacterial virulence and interacts with tomato 14-3-3 proteins in a phosphorylation-dependent manner Plant Physiol. 2013 161 2062 2074 10.1104/pp.112.211748 23417089
12. Morrison DK The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development Trends Cell Biol. 2009 19 16 23 10.1016/j.tcb.2008.10.003 19027299
13. Freeman AK Morrison DK 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression Semin. Cell Dev. Biol. 2011 22 681 687 10.1016/j.semcdb.2011.08.009 21884813
14. Eriksson JE Introducing intermediate filaments: from discovery to disease J. Clin. Invest. 2009 119 1763 1771 10.1172/JCI38339 19587451
15. Ivaska J Pallari HM Nevo J Eriksson JE Novel functions of vimentin in cell adhesion, migration, and signaling Exp. Cell Res. 2007 313 2050 2062 10.1016/j.yexcr.2007.03.040 17512929
16. Wei J Overexpression of vimentin contributes to prostate cancer invasion and metastasis via src regulation Anticancer Res. 2008 28 327 334 18383865
17. Fuyuhiro Y Clinical significance of vimentin-positive gastric cancer cells Anticancer Res. 2010 30 5239 5243 21187520
18. Korsching E The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? J. Pathol. 2005 206 451 457 10.1002/path.1797 15906273
19. Kidd ME Shumaker DK Ridge KM The role of vimentin intermediate filaments in the progression of lung cancer AM J. Resp. Cell Mol. 2014 50 1 6
20. Caselitz J Janner M Breitbart E Weber K Osborn M Malignant melanomas contain only the vimentin type of intermediate filaments Virchows Arch. 1983 400 43 51 10.1007/BF00627007
21. Satelli A Li S Vimentin in cancer and its potential as a molecular target for cancer therapy Cell. Mol. Life Sci. 2011 68 3033 3046 10.1007/s00018-011-0735-1 21637948
22. Li M A novel function for vimentin: the potential biomarker for predicting melanoma hematogenous metastasis J. Exp. Clin. Canc. Res. 2010 29 109 10.1186/1756-9966-29-109
23. Yoon SJ Pseudomonas syringae evades phagocytosis by animal cells via type III effector-mediated regulation of actin filament plasticity Environ. Microbiol. 2018 20 3980 3991 10.1111/1462-2920.14426 30251365
24. Zhao L Zhang P Su XJ Zhang B The ubiquitin ligase TRIM56 inhibits ovarian cancer progression by targeting vimentin J. Cell Physiol. 2018 233 2420 2425 10.1002/jcp.26114 28771721
25. Byun Y Caspase cleavage of vimentin disrupts intermediate filaments and promotes apoptosis Cell Death Differ. 2001 8 443 450 10.1038/sj.cdd.4400840 11423904
26. Mizushima N Yoshimori T Levine B Methods in mammalian autophagy research Cell 2010 140 313 326 10.1016/j.cell.2010.01.028 20144757
27. Gatica D Lahiri V Klionsky DJ Cargo recognition and degradation by selective autophagy Nat. Cell Biol. 2018 20 233 242 10.1038/s41556-018-0037-z 29476151
28. Tan P TRIM59 promotes breast cancer motility by suppressing p62-selective autophagic degradation of PDCD10 PLoS Biol. 2018 16 e3000051 10.1371/journal.pbio.3000051 30408026
29. Liu T TRIM11 suppresses AIM2 inflammasome by degrading AIM2 via p62-dependent selective autophagy Cell Rep. 2016 16 1988 2002 10.1016/j.celrep.2016.07.019 27498865
30. Zhou J NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses PLoS Genet. 2013 9 e1003196 10.1371/journal.pgen.1003196 23341779
31. Liu Z Ubiquitylation of autophagy receptor Optineurin by HACE1 activates selective autophagy for tumor suppression Cancer Cell. 2014 26 106 120 10.1016/j.ccr.2014.05.015 25026213
32. Mandell MA TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition Dev. Cell. 2014 30 394 409 10.1016/j.devcel.2014.06.013 25127057
33. Ustun S Bacteria exploit autophagy for proteasome degradation and enhanced virulence in plants Plant Cell. 2018 30 668 685 10.1105/tpc.17.00815 29500318
34. Li SS p62/SQSTM1 interacts with vimentin to enhance breast cancer metastasis Carcinogenesis 2017 38 1092 1103 10.1093/carcin/bgx099 28968743
35. Herrera Estrada L Padmore TJ Champion JA Bacterial effector nanoparticles as breast cancer therapeutics Mol. Pharm. 2016 13 710 719 10.1021/acs.molpharmaceut.5b00377 26800341
36. Andor N Pan-cancer analysis of the extent and consequences of intratumor heterogeneity Nat. Med. 2016 22 105 113 10.1038/nm.3984 26618723
37. Arozarena I Wellbrock C Phenotype plasticity as enabler of melanoma progression and therapy resistance Nat. Rev. Cancer 2019 19 377 391 10.1038/s41568-019-0154-4 31209265
38. Gopalakrishnam V Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients Science 2018 359 97 103 10.1126/science.aan4236 29097493
39. Matson V The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients Science 2018 359 104 108 10.1126/science.aao3290 29302014
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.