최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기ISPRS international journal of geo-information, v.9 no.4, 2020년, pp.257 -
Lee, Kiwon (Department of Electronics and Information Engineering, Hansung University, Seoul 02876, Korea) , Kim, Kwangseob (Department of Electronics and Information Engineering, Hansung University, Seoul 02876, Korea) , Lee, Sun-Gu (Korea Aerospace Research Institute, Satellite Application Division, Daejeon 34133, Korea) , Kim, Yongseung (Korea Aerospace Research Institute, Satellite Application Division, Daejeon 34133, Korea)
Surface reflectance data obtained by the absolute atmospheric correction of satellite images are useful for land use applications. For Landsat and Sentinel-2 images, many radiometric processing methods exist, and the images are supported by most types of commercial and open-source software. However,...
Horion Using earth observation- based dry season NDVI trends for assessment of changes in tree cover in the Sahel Int. J. Remote Sens. 2014 10.1080/01431161.2014.883104 35 2493
Fan A global study of NDVI difference among moderate-resolution satellite sensors ISPRS J. Photogramm. 2016 10.1016/j.isprsjprs.2016.09.008 121 177
White A generalizable NDVI based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin Ecol. Indic. 2016 10.1016/j.ecolind.2015.01.032 60 1309
10.3390/rs9060584 Gascon, F., Bouzinac, C., Thépaut, O., Jung, M., Francesconi, B., Louis, J., Lonjou, V., Lafrance, B., Massera, S., and Gaudel-Vacaresse, A. (2017). Copernicus Sentinel-2A Calibration and Products Validation Status. Remote Sens., 9.
Meave Predicting old-growth tropical forest attributes from very high resolution (VHR)-derived surface metrics Int. J. Remote Sens. 2017 10.1080/01431161.2016.1266108 38 492
Miura Assessment of cross-sensor vegetation index compatibility between VIIRS and MODIS using near-coincident observations J. Appl. Remote Sens. 2018 10.1117/1.JRS.12.045004 12 045004
10.3390/rs8110938 Vuolo, F., Zoltak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer, M., Weiss, M., Baret, F., and Atzberger, C. (2016). Data Service Platform for Sentinel-2 Surface Reflectance and Value-Added Products: System Use and Examples. Remote Sens., 8.
Kuhn Performance of Landsat-8 and Sentinel-2 surface reflectance products for river remote sensing retrievals of chlorophyll-a and turbidity Remote Sens. Environ. 2019 10.1016/j.rse.2019.01.023 224 104
Manakos, I., Manevski, K., Kalaitzidis, C., and Edler, D. (2011, January 11-13). Comparison between Atmospheric Correction Modules on the Basis of Worldview-2 Imagery and In Situ Spectroradiometric Measurements. Proceedings of the 7th EARSeL SIG Imaging Spectroscopy workshop, Edinburgh, UK.
Maglione Coastline extraction using high resolution WorldView-2 satellite imagery Eur. J. Remote Sens. 2014 10.5721/EuJRS20144739 47 685
Yan Mapping vegetation functional types in urban areas with WorldView-2 imagery: Integrating object-based classification with phenology Urban For. Urban Gree. 2018 10.1016/j.ufug.2018.01.021 31 230
Xian Performances of WorldView 3, Sentinel 2, and Landsat 8 data in mapping impervious surface Remote Sens. Appl. Soc. Environ. 2019 15 100246
Solano A methodology based on GEOBIA and WorldView-3 imagery to derive vegetation indices at tree crown detail in olive orchards Int. J. Appl. Earth Obs. 2019 83 101912
Fang Street tree health from space? An evaluation using WorldView-3 data and the Washington D.C. Street Tree Spatial Database Urban For. Urban Gree. 2020 10.1016/j.ufug.2020.126634 49 126634
Kim Radiometric characterization and validation for the KOMPSAT-3 sensor Remote Sens. Lett. 2015 10.1080/2150704X.2015.1054043 6 529
10.5194/isprsarchives-XLI-B1-379-2016 Shin, D.Y., Ahn, H.Y., Lee, S.G., Choi, C.U., and Kim, J.S. (2016, January 12-19). Radiometric Cross-calibration of KOMPSAT-3A with Landsat-8. Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016, XXIII ISPRS Congress, Prague, Czech Republic.
10.3390/rs10050697 Yeom, J.M., Ko, J., Hwang, J., Lee, C.S., Choi, C.U., and Jeong, S. (2018). Updating Absolute Radiometric Characteristics for KOMPSAT-3 and KOMPSAT-3A Multispectral Imaging Sensors Using Well-Characterized Pseudo-Invariant Tarps and Microtops II. Remote Sens., 10.
Ahn Feasibility Assessment of Spectral Band Adjustment Factor of KOMPSAT-3 for Agriculture Remote Sensing Korean J. Remote Sens. 2018 34 1369
Lee An Experiment for Surface Reflectance Image Generation of KOMPSAT 3A Image Data by Open Source Implementation Korean J. Remote Sens. 2019 35 1327
(2020, January 10). AERONET, Aerosol Robotic Network, Available online: https://aeronet.gsfc.nasa.gov/.
Hadjimitsis Atmospheric correction for satellite remotely sensed data intended for agricultural applications: Impact on vegetation indices Nat. Hazards Earth Syst. Sci. 2010 10.5194/nhess-10-89-2010 10 89
Shabanov Evaluation of the performance of Suomi NPP VIIRS top of canopy vegetation indices over AERONET sites Remote Sens. Environ. 2015 10.1016/j.rse.2015.02.004 162 29
Gorelick Google Earth Engine: Planetary-scale geospatial analysis for everyone Remote Sens. Environ. 2017 10.1016/j.rse.2017.06.031 202 18
10.3390/rs10101509 Kumar, L., and Mutang, O. (2018). Google Earth Engine Applications since Inception: Usage, Trends, and Potential. Remote Sens., 10.
Nouri High Spatial Resolution WorldView-2 Imagery for Mapping NDVI and Its Relationship to Temporal Urban Landscape Evapotranspiration Factors Remote Sens. 2014 10.3390/rs6010580 6 580
Jensen, J.R. (2016). Introductory Digital Image Processing A Remote Sensing Perspective, Pearson. [4th ed.].
Bunting, P. (2020, January 10). Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI). Available online: https://arcsi.remotesensing.info/.
10.3390/rs11030257 Frantz, D.M., Stellmes, M., and Hostert, P. (2019). A Global MODIS Water Vapor Database for the Operational Atmospheric Correction of Historic and Recent Landsat Imagery. Remote Sens., 11.
Leutner, B. (2020, January 10). Package ‘RStoolbox’. Available online: https://cran.r-project.org/web/packages/RStoolbox/RStoolbox.pdf.
Sterckx Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: Validation for coastal and inland waters Eur. J. Remote Sens. 2018 5 525
Conrad System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 Geosci. Model Dev. 2015 10.5194/gmd-8-1991-2015 8 1991
(2020, January 07). DigitalGlobe Atmospheric Compensation. Available online: http://digitalglobe-marketing.s3.amazonaws.com/files/documents/DataSheet_AComp_DS.pdf.
(2020, January 10). MODIS Land Surface Reflectance. Available online: http://6s.ltdri.org/.
Orfeo Toolbox (2020, January 10). Open Source Processing for Remote Sensing Images. Available online: https://www.orfeo-toolbox.org/.
(2019, May 02). TOA Radiance Reflectance Conversion of KOMPSAT 1.5. Available online: http://www.si-imaging.com/resources/?pageid=2&uid=284&mod=document.
(2019, May 02). KOMPSAT-3A Image Data Manual v1.4. Available online: http://www.si-imaging.com/resources/?pageid=4&uid=234&mod=document.
(2020, March 30). OTB Cook Book. Available online: https://www.orfeo-toolbox.org/CookBook/CompilingOTBFromSource.html#compilingfromsource.
(2019, October 10). Reference Solar Spectral Irradiance: ASTM G-173, Available online: https://rredc.nrel.gov/solar//spectra/am1.5/ASTMG173/ASTMG173.html.
(2020, January 04). NDVI, Mapping a Function over a Collection, Quality Mosaicking. Available online: https://developers.google.com/earth-engine/tutorial_api_06.
(2020, January 10). USGS Landsat 8 Surface Reflectance Tier 1. Available online: https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C01_T1_SR.
(2020, January 10). U.S. Landsat Analysis Ready Data: U.S. Geological Survey Fact Sheet 2018-3053, Available online: https://pubs.er.usgs.gov/publication/fs20183053.
(2020, March 30). CEOS Analysis Ready Data. Available online: http://ceos.org/ard/.
(2020, March 30). EarthExplorer Homepage, Available online: https://earthexplorer.usgs.gov/.
(2020, March 30). 6 Spectral Indexes on Top of NDVI to Make Your Vegetation Analysis Complete. Available online: https://eos.com/blog/6-spectral-indexes-on-top-of-ndvi-to-make-your-vegetation-analysis-complete/.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.