$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Whole-Genome Sequencing-Based Characteristics in Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Isolated from Retail Meats in Korea 원문보기

Microorganisms, v.8 no.4, 2020년, pp.508 -   

Kim, Seokhwan (Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea) ,  Kim, Hansol (myksh@korea.kr (S.K.)) ,  Kim, Yonghoon (hskmfds@korea.kr (H.K.)) ,  Kim, Migyeong (washout71@korea.kr (Y.K.)) ,  Kwak, Hyosun (angelmg@korea.kr (M.K.)) ,  Ryu, Sangryeol (Division of Food Microbiology, National Institute of Food and Drug Safety Evaluation, Cheongju 28159, Korea)

Abstract AI-Helper 아이콘AI-Helper

The spread of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC) has posed a critical health risk to both humans and animals, because resistance to beta-lactam antibiotics makes treatment for commonly infectious diseases more complicated. In this study, we report the prevalence an...

주제어

참고문헌 (81)

  1. 1. Croxen M.A. Finlay B.B. Molecular mechanisms of Escherichia coli pathogenicity Nat. Rev. Microbiol. 2009 8 26 38 10.1038/nrmicro2265 19966814 

  2. 2. Kaper J.B. Nataro J.P. Mobley H.L. Pathogenic Escherichia coli Nat. Rev. Microbiol. 2004 2 123 140 10.1038/nrmicro818 15040260 

  3. 3. Pouillot F. Chomton M. Blois H. Courroux C. Noelig J. Bidet P. Bingen E. Bonacorsi S. Efficacy of bacteriophage therapy in experimental sepsis and meningitis caused by a clone O25b: H4-ST131 Escherichia coli strain producing CTX-M-15 Antimicrob. Agents Chemother. 2012 56 3568 3575 10.1128/AAC.06330-11 22491690 

  4. 4. Blake D. Hillman K. Fenlon D. Low J. Transfer of antibiotic resistance between commensal and pathogenic members of the Enterobacteriaceae under ileal conditions J. Appl. Microbiol. 2003 95 428 436 10.1046/j.1365-2672.2003.01988.x 12911689 

  5. 5. Szmolka A. Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health Front. Microbiol. 2013 4 258 10.3389/fmicb.2013.00258 24027562 

  6. 6. World Health Organization Integrated Surveillance of Antimicrobial Resistance in Foodborne Bacteria: Application of a One Health Approach: Guidance from the WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR) WHO Geneva, Switzerland 2017 

  7. 7. World Health Organization Global Priority of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics WHO Geneva, Switzerland 2017 

  8. 8. Paterson D.L. Bonomo R.A. Extended-spectrum β-lactamases: A clinical update Clin. Microbiol. Rev. 2005 18 657 686 10.1128/CMR.18.4.657-686.2005 16223952 

  9. 9. Cho H. Uehara T. Bernhardt T.G. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery Cell 2014 159 1300 1311 10.1016/j.cell.2014.11.017 25480295 

  10. 10. Hawkey P.M. Warren R.E. Livermore D.M. McNulty C.A. Enoch D.A. Otter J.A. Wilson A.P.R. Treatment of infections caused by multidrug-resistant gram-negative bacteria: Report of the British Society for Antimicrobial Chemotherapy/healthcare Infection Society/British Infection Association Joint Working Party J. Antimicrob. Chemother. 2018 73 iii2 iii78 10.1093/jac/dky027 29514274 

  11. 11. Rodriguez-Bano J. Gutierrez-Gutierrez B. Machuca I. Pascual A. Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae Clin. Microbiol. Rev. 2018 31 10.1128/CMR.00079-17 

  12. 12. Livermore D.M. Canton R. Gniadkowski M. Nordmann P. Rossolini G.M. Arlet G. Ayala J. Coque T.M. Kern-Zdanowicz I. Luzzaro F. CTX-M: Changing the face of ESBLs in Europe J. Antimicrob. Chemother. 2006 59 165 174 10.1093/jac/dkl483 17158117 

  13. 13. Dolejska M. Papagiannitsis C.C. Plasmid-mediated resistance is going wild Plasmid 2018 99 99 111 10.1016/j.plasmid.2018.09.010 30243983 

  14. 14. Doi Y. Iovleva A. Bonomo R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world J. Travel Med. 2017 24 S44 S51 10.1093/jtm/taw102 28521000 

  15. 15. Valentin L. Sharp H. Hille K. Seibt U. Fischer J. Pfeifer Y. Michael G.B. Nickel S. Schmiedel J. Falgenhauer L. Subgrouping of ESBL-producing Escherichia coli from animal and human sources: An approach to quantify the distribution of ESBL types between different reservoirs Int. J. Med. Microbiol. 2014 304 805 816 10.1016/j.ijmm.2014.07.015 25213631 

  16. 16. De Been M. Lanza V.F. De Toro M. Scharringa J. Dohmen W. Du Y. Hu J. Lei Y. Li N. Tooming-Klunderud A. Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm animals and humans by specific plasmid lineages PLoS Genet. 2014 10 10.1371/journal.pgen.1004776 25522320 

  17. 17. Liebana E. Carattoli A. Coque T.M. Hasman H. Magiorakos A.P. Mevius D. Peixe L. Poirel L. Schuepbach-Regula G. Torneke K. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: An EU perspective of epidemiology, analytical methods, risk factors, and control options Clin. Infect. Dis. 2012 56 1030 1037 10.1093/cid/cis1043 23243183 

  18. 18. Leverstein-van Hall M. Dierikx C. Cohen Stuart J. Voets G. Van Den Munckhof M. Van Essen-Zandbergen A. Platteel T. Fluit A. Van de Sande-Bruinsma N. Scharinga J. Dutch patients, retail chicken meat and poultry share the same ESBL genes, plasmids and strains Clin. Microbiol. Infect. 2011 17 873 880 10.1111/j.1469-0691.2011.03497.x 21463397 

  19. 19. Lazarus B. Paterson D.L. Mollinger J.L. Rogers B.A. Do human extraintestinal Escherichia coli infections resistant to expanded-spectrum cephalosporins originate from food-producing animals? A systematic review Clin. Infect. Dis. 2014 60 439 452 10.1093/cid/ciu785 25301206 

  20. 20. Holmes A.H. Moore L.S. Sundsfjord A. Steinbakk M. Regmi S. Karkey A. Guerin P.J. Piddock L.J. Understanding the mechanisms and drivers of antimicrobial resistance Lancet 2016 387 176 187 10.1016/S0140-6736(15)00473-0 26603922 

  21. 21. Schwarz S. Kehrenberg C. Walsh T. Use of antimicrobial agents in veterinary medicine and food animal production Int. J. Antimicrob. Agents 2001 17 431 437 10.1016/S0924-8579(01)00297-7 11397611 

  22. 22. Oniciuc E.A. Likotrafiti E. Alvarez-Molina A. Prieto M. Santos J.A. Alvarez-Ordonez A. The present and future of whole genome sequencing (WGS) and whole metagenome sequencing (WMS) for surveillance of antimicrobial resistant microorganisms and antimicrobial resistance genes across the food chain Genes 2018 9 268 10.3390/genes9050268 29789467 

  23. 23. Hong J.S. Song W. Park H.M. Oh J.Y. Chae J.C. Han J.I. Jeong S.H. First detection of New Delhi metallo-β-Lactamase-5-producing Escherichia coli from companion animals in Korea Microb. Drug. Resist. 2019 25 344 349 10.1089/mdr.2018.0237 30379599 

  24. 24. Lim J.S. Choi D.S. Kim Y.J. Chon J.W. Kim H.S. Park H.J. Moon J.S. Wee S.H. Seo K.H. Characterization of Escherichia coli ?producing extended-spectrum β-lactamase (ESBL) Isolated from chicken slaughterhouses in South Korea Foodborne Pathog. Dis. 2015 12 741 748 10.1089/fpd.2014.1921 26219023 

  25. 25. Kim J.S. Kim J. Kim S.J. Jeon S.E. Oh K.H. Cho S.H. Kang Y.H. Han S.Y. Chung G.T. Characterization of CTX-M-type extended-spectrum beta-lactamase-producing diarrheagenic Escherichia coli isolates in the Republic of Korea during 2008?2011 J. Microbiol. Biotechnol. 2014 24 421 426 10.4014/jmb.1401.01023 24509253 

  26. 26. Tamang M.D. Nam H.M. Kim S.R. Chae M.H. Jang G.C. Jung S.C. Lim S.K. Prevalence and molecular characterization of CTX-M β-lactamase?producing Escherichia coli isolated from healthy swine and cattle Foodborne Pathog. Dis. 2013 10 13 20 10.1089/fpd.2012.1245 23210923 

  27. 27. Tamang M.D. Nam H.M. Gurung M. Jang G.C. Kim S.R. Jung S.C. Park Y.H. Lim S.K. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment Appl. Environ. Microbiol. 2013 79 3898 3905 10.1128/AEM.00522-13 23584784 

  28. 28. Kim J. Lim Y.M. Rheem I. Lee Y. Lee J.C. Seol S.Y. Lee Y.C. Cho D.T. CTX-M and SHV-12 β-lactamases are the most common extended-spectrum enzymes in clinical isolates of Escherichia coli and Klebsiella pneumoniae collected from 3 university hospitals within Korea FEMS Microbiol. Lett. 2005 245 93 98 10.1016/j.femsle.2005.02.029 15796985 

  29. 29. Kim Y.A. Kim H. Choi M.H. Seo Y.H. Lee H. Lee K. Whole-genome analysis of bla CTX-M-55 -carrying Escherichia coli among pigs, farm environment, and farm workers Ann. Lab. Med. 2020 40 180 183 10.3343/alm.2020.40.2.180 31650737 

  30. 30. Park H. Kim J. Ryu S. Jeon B. Predominance of bla CTX-M-65 and bla CTX-M-55 in extended-spectrum β-lactamase-producing Escherichia coli from raw retail chicken in South Korea J. Glob. Antimicrob. Resist. 2019 17 216 220 10.1016/j.jgar.2019.01.005 30658198 

  31. 31. Kim Y.J. Moon J.S. Oh D.H. Chon J.W. Song B.R. Lim J.S. Heo E.J. Park H.J. Wee S.H. Sung K. Genotypic characterization of ESBL-producing Escherichia coli from imported meat in South Korea Food Res. Int. 2018 107 158 164 10.1016/j.foodres.2017.12.023 29580473 

  32. 32. Jo S.J. Woo G.J. Molecular characterization of plasmids encoding CTX-M β-lactamases and their associated addiction systems circulating among Escherichia coli from retail chickens, chicken farms, and slaughterhouses in Korea J. Microbiol. Biotechnol. 2016 26 270 276 10.4014/jmb.1507.07048 26562691 

  33. 33. CLSI Performance Standards for Antimicrobial Susceptibility Testing. CLSI Supplement M100 29th ed. Clinical and Laboratory Standards Institute Wayne, PA, USA 2019 

  34. 34. EUCAST The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 9.0 Available online: http://www.eucast.org (accessed on 30 January 2019) 

  35. 35. NARMS The National Antimicrobial Resistance Monitoring System. Antimicrobial Agents Used for Susceptibility Testing for Escherichia coli Isolates Available online: https://www.cdc.gov/narms/antibiotics-tested.html (accessed on 23 May 2019) 

  36. 36. Bankevich A. Nurk S. Antipov D. Gurevich A.A. Dvorkin M. Kulikov A.S. Lesin V.M. Nikolenko S.I. Pham S. Prjibelski A.D. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing J. Comput. Biol. 2012 19 455 477 10.1089/cmb.2012.0021 22506599 

  37. 37. Seemann T. Prokka: Rapid prokaryotic genome annotation Bioinformatics 2014 30 2068 2069 10.1093/bioinformatics/btu153 24642063 

  38. 38. Page A.J. Cummins C.A. Hunt M. Wong V.K. Reuter S. Holden M.T. Fookes M. Falush D. Keane J.A. Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis Bioinformatics 2015 31 3691 3693 10.1093/bioinformatics/btv421 26198102 

  39. 39. Tettelin H. Riley D. Cattuto C. Medini D. Comparative genomics: The bacterial pan-genome Curr. Opin. Microbiol. 2008 11 472 477 10.1016/j.mib.2008.09.006 19086349 

  40. 40. Rasko D.A. Rosovitz M. Myers G.S. Mongodin E.F. Fricke W.F. Gajer P. Crabtree J. Sebaihia M. Thomson N.R. Chaudhuri R. The pangenome structure of Escherichia coli : Comparative genomic analysis of E. coli commensal and pathogenic isolates J. Bacteriol. 2008 190 6881 6893 10.1128/JB.00619-08 18676672 

  41. 41. Nourdin-Galindo G. Sanchez P. Molina C.F. Espinoza-Rojas D.A. Oliver C. Ruiz P. Vargas-Chacoff L. Carcamo J.G. Figueroa J.E. Mancilla M. Comparative pan-genome analysis of Piscirickettsia salmonis reveals genomic divergences within genogroups Front. Cell. Infect. Microbiol. 2017 7 459 10.3389/fcimb.2017.00459 29164068 

  42. 42. Zhao Y. Jia X. Yang J. Ling Y. Zhang Z. Yu J. Wu J. Xiao J. PanGP: A tool for quickly analyzing bacterial pan-genome profile Bioinformatics 2014 30 1297 1299 10.1093/bioinformatics/btu017 24420766 

  43. 43. Page A.J. Taylor B. Delaney A.J. Soares J. Seemann T. Keane J.A. Harris S.R. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments Microb. Genom. 2016 2 10.1099/mgen.0.000056 

  44. 44. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies Bioinformatics 2014 30 1312 1313 10.1093/bioinformatics/btu033 24451623 

  45. 45. Cheng L. Connor T.R. Siren J. Aanensen D.M. Corander J. Hierarchical and spatially explicit clustering of DNA sequences with BAPS software Mol. Biol. Evol. 2013 30 1224 1228 10.1093/molbev/mst028 23408797 

  46. 46. Hadfield J. Croucher N.J. Goater R.J. Abudahab K. Aanensen D.M. Harris S.R. Phandango: An interactive viewer for bacterial population genomics Bioinformatics 2017 34 292 293 10.1093/bioinformatics/btx610 29028899 

  47. 47. Beghain J. Bridier-Nahmias A. Le Nagard H. Denamur E. Clermont O. ClermonTyping: An easy-to-use and accurate in silico method for Escherichia genus strain phylotyping Microb. Genom. 2018 4 10.1099/mgen.0.000192 

  48. 48. Carattoli A. Zankari E. Garcia-Fernandez A. Voldby Larsen M. Lund O. Villa L. Møller Aarestrup F. Hasman H. In silico detection and typing of plasmids using PlasmidFinder and Plasmid Multilocus Sequence Typing Antimicrob. Agents Chemother. 2014 58 3895 3903 10.1128/AAC.02412-14 24777092 

  49. 49. Zankari E. Hasman H. Cosentino S. Vestergaard M. Rasmussen S. Lund O. Aarestrup F.M. Larsen M.V. Identification of acquired antimicrobial resistance genes J. Antimicrob. Chemother. 2012 67 2640 2644 10.1093/jac/dks261 22782487 

  50. 50. Wirth T. Falush D. Lan R. Colles F. Mensa P. Wieler L.H. Karch H. Reeves P.R. Maiden M.C. Ochman H. Sex and virulence in Escherichia coli : An evolutionary perspective Mol. Microbiol. 2006 60 1136 1151 10.1111/j.1365-2958.2006.05172.x 16689791 

  51. 51. Larsen M.V. Cosentino S. Rasmussen S. Friis C. Hasman H. Marvig R.L. Jelsbak L. Sicheritz-Ponten T. Ussery D.W. Aarestrup F.M. Multilocus sequence typing of total-genome-sequenced bacteria J. Clin. Microbiol. 2012 50 1355 1361 10.1128/JCM.06094-11 22238442 

  52. 52. Shin S.W. Jung M. Won H.G. Belaynehe K.M. Yoon I.J. Yoo H.S. Characteristics of transmissible CTX-M- and CMY-type β-lactamase-producing Escherichia coli isolates collected from pig and chicken farms in South Korea J. Microbiol. Biotechnol. 2017 27 1716 1723 10.4014/jmb.1610.10006 28683526 

  53. 53. Kaesbohrer A. Bakran-Lebl K. Irrgang A. Fischer J. Kampf P. Schiffmann A. Werckenthin C. Busch M. Kreienbrock L. Hille K. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany Vet. Microbiol. 2019 233 52 60 10.1016/j.vetmic.2019.03.025 31176413 

  54. 54. Randall L. Lodge M. Elviss N. Lemma F. Hopkins K. Teale C. Woodford N. Evaluation of meat, fruit and vegetables from retail stores in five United Kingdom regions as sources of extended-spectrum beta-lactamase (ESBL)-producing and carbapenem-resistant Escherichia coli Int. J. Food Microbiol. 2017 241 283 290 10.1016/j.ijfoodmicro.2016.10.036 27821357 

  55. 55. Pehlivanlar Onen S. Aslanta O. ebnem Yılmaz E. Kurekci C. Prevalence of β-lactamase producing Escherichia coli from retail meat in Turkey J. Food Sci. 2015 80 M2023 M2029 10.1111/1750-3841.12984 26256548 

  56. 56. Ojer-Usoz E. Gonzalez D. Vitas A.I. Leiva J. Garcia-Jalon I. Febles-Casquero A. De la Soledad Escolano M. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in meat products sold in Navarra, Spain Meat Sci. 2013 93 316 321 10.1016/j.meatsci.2012.09.009 23062714 

  57. 57. Yoon E.J. Kim D. Jeong S.H. Bloodstream infections and carbapenem-resistant Enterobacteriaceae in South Korea Lancet Infect. Dis. 2019 19 931 932 10.1016/S1473-3099(19)30431-1 31478516 

  58. 58. Ahn J.Y. Song J.E. Kim M.H. Choi H. Kim J.K. Ann H.W. Kim J.H. Jeon Y. Jeong S.J. Kim S.B. Risk factors for the acquisition of carbapenem-resistant Escherichia coli at a tertiary care center in South Korea: A matched case-control study Am. J. Infect. Control 2014 42 621 625 10.1016/j.ajic.2014.02.024 24837112 

  59. 59. Van Boeckel T.P. Pires J. Silvester R. Zhao C. Song J. Criscuolo N.G. Gilbert M. Bonhoeffer S. Laxminarayan R. Global trends in antimicrobial resistance in animals in low-and middle-income countries Science 2019 365 eaaw1944 10.1126/science.aaw1944 31604207 

  60. 60. Bevan E.R. Jones A.M. Hawkey P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype J. Antimicrob. Chemother. 2017 72 2145 2155 10.1093/jac/dkx146 28541467 

  61. 61. Hong J.S. Song W. Park H.M. Oh J.Y. Chae J.C. Shin S. Jeong S.H. Clonal spread of extended-spectrum cephalosporin-resistant Enterobacteriaceae between companion animals and humans in South Korea Front. Microbiol. 2019 10 1371 10.3389/fmicb.2019.01371 31275286 

  62. 62. Na S.H. Moon D.C. Choi M.J. Oh S.J. Jung D.Y. Sung E.J. Kang H.Y. Hyun B.H. Lim S.K. Antimicrobial resistance and molecular characterization of extended-spectrum β-lactamase-producing Escherichia coli isolated from ducks in South Korea Foodborne Pathog. Dis. 2019 16 799 806 10.1089/fpd.2019.2644 31305137 

  63. 63. He D. Chiou J. Zeng Z. Liu L. Chen X. Zeng L. Chan E.W.C. Liu J.H. Chen S. Residues distal to the active site contribute to enhanced catalytic activity of variant and hybrid β-lactamases derived from CTX-M-14 and CTX-M-15 Antimicrob. Agents Chemother. 2015 59 5976 5983 10.1128/AAC.04920-14 26169409 

  64. 64. Kiratisin P. Apisarnthanarak A. Saifon P. Laesripa C. Kitphati R. Mundy L.M. The emergence of a novel ceftazidime-resistant CTX-M extended-spectrum β-lactamase, CTX-M-55, in both community-onset and hospital-acquired infections in Thailand Diagn. Microbiol. Infect. Dis. 2007 58 349 355 10.1016/j.diagmicrobio.2007.02.005 17449211 

  65. 65. Nadimpalli M. Fabre L. Yith V. Sem N. Gouali M. Delarocque-Astagneau E. Sreng N. Le Hello S. CTX-M-55-type ESBL-producing Salmonella enterica are emerging among retail meats in Phnom Penh, Cambodia J. Antimicrob. Chemother. 2018 74 342 348 10.1093/jac/dky451 

  66. 66. Rao L. Lv L. Zeng Z. Chen S. He D. Chen X. Wu C. Wang Y. Yang T. Wu P. Increasing prevalence of extended-spectrum cephalosporin-resistant Escherichia coli in food animals and the diversity of CTX-M genotypes during 2003?2012 Vet. Microbiol. 2014 172 534 541 10.1016/j.vetmic.2014.06.013 24999233 

  67. 67. Zheng H. Zeng Z. Chen S. Liu Y. Yao Q. Deng Y. Chen X. Lv L. Zhuo C. Chen Z. Prevalence and characterisation of CTX-M β-lactamases amongst Escherichia coli isolates from healthy food animals in China Int. J. Antimicrob. Agents 2012 39 305 310 10.1016/j.ijantimicag.2011.12.001 22325120 

  68. 68. Hayashi W. Ohsaki Y. Taniguchi Y. Koide S. Kawamura K. Suzuki M. Kimura K. Wachino J.-I. Nagano Y. Arakawa Y. High prevalence of bla CTX-M-14 among genetically diverse Escherichia coli recovered from retail raw chicken meat portions in Japan Int. J. Food Microbiol. 2018 284 98 104 10.1016/j.ijfoodmicro.2018.08.003 30096596 

  69. 69. Mathers A.J. Peirano G. Pitout J.D. The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae Clin. Microbiol. Rev. 2015 28 565 591 10.1128/CMR.00116-14 25926236 

  70. 70. Musicha P. Feasey N.A. Cain A.K. Kallonen T. Chaguza C. Peno C. Khonga M. Thompson S. Gray K.J. Mather A.E. Genomic landscape of extended-spectrum β-lactamase resistance in Escherichia coli from an urban African setting J. Antimicrob. Chemother. 2017 72 1602 1609 10.1093/jac/dkx058 28333330 

  71. 71. Park S.C. Lee K. Kim Y.O. Won S. Chun J. Large-scale genomics reveals the genetic characteristics of seven species and importance of phylogenetic distance for estimating pan-genome size Front. Microbiol. 2019 10 834 10.3389/fmicb.2019.00834 31068915 

  72. 72. Nguyen V.T. Jamrozy D. Matamoros S. Carrique-Mas J.J. Ho H.M. Thai Q.H. Nguyen T.N.M. Wagenaar J.A. Thwaites G. Parkhill J. Limited contribution of non-intensive chicken farming to ESBL-producing Escherichia coli colonization in humans in Vietnam: An epidemiological and genomic analysis J. Antimicrob. Chemother. 2019 74 561 570 10.1093/jac/dky506 30629197 

  73. 73. Clermont O. Christenson J.K. Daubie A.S. Gordon D.M. Denamur E. Development of an allele-specific PCR for Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing J. Microbiol. Methods 2014 101 24 27 10.1016/j.mimet.2014.03.008 24685601 

  74. 74. Mora A. Garcia-Pena F.J. Alonso M.P. Pedraza-Diaz S. Ortega-Mora L.M. Garcia-Parraga D. Lopez C. Viso S. Dahbi G. Marzoa J. Impact of human-associated Escherichia coli clonal groups in antarctic pinnipeds: Presence of ST73, ST95, ST141 and ST131 Sci. Rep. 2018 8 1 11 10.1038/s41598-018-22943-0 29311619 

  75. 75. Manges A.R. Escherichia coli and urinary tract infections: The role of poultry-meat Clin. Microbiol. Infect. 2016 22 122 129 10.1016/j.cmi.2015.11.010 26679924 

  76. 76. Day M.J. Hopkins K.L. Wareham D.W. Toleman M.A. Elviss N. Randall L. Teale C. Cleary P. Wiuff C. Doumith M. Extended-spectrum β-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: An epidemiological surveillance and typing study Lancet Infect. Dis. 2019 19 1325 1335 10.1016/S1473-3099(19)30273-7 31653524 

  77. 77. Kim B. Kim J. Seo M.R. Wie S.-H. Cho Y. Lim S.K. Lee J. Kwon K. Lee H. Cheong H.J. Clinical characteristics of community-acquired acute pyelonephritis caused by ESBL-producing pathogens in South Korea Infection 2013 41 603 612 10.1007/s15010-013-0441-z 23504297 

  78. 78. Villa M.F.L. Salinas L. Villavivencio F. Rafael T. Salas S. Rivera R. Villacis J. Satan C. Ushina L. Munoz O. Diverse Escherichia coli lineages, from domestic animals and humans in a household, carry colistin resistance gene mcr-1 in Ecuador bioRxiv 2018 10.1101/350587 

  79. 79. Van Hoek A.H. Veenman C. Florijn A. Huijbers P.M. Graat E.A. De Greeff S. Dierikx C.M. Van Duijkeren E. Longitudinal study of ESBL Escherichia coli carriage on an organic broiler farm J. Antimicrob. Chemother. 2018 73 3298 3304 10.1093/jac/dky362 30219829 

  80. 80. Skurnik D. Clermont O. Guillard T. Launay A. Danilchanka O. Pons S. Diancourt L. Lebreton F. Kadlec K. Roux D. Emergence of antimicrobial-resistant Escherichia coli of animal origin spreading in humans Mol. Biol. Evol. 2016 33 898 914 10.1093/molbev/msv280 26613786 

  81. 81. Choi M.J. Lim S.K. Jung S.C. Ko K.S. Comparisons of CTX-M-producing Escherichia coli isolates from humans and animals in South Korea J. Bacteriol. Virol. 2014 44 44 51 10.4167/jbv.2014.44.1.44 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로