$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Genetic Manipulation of a Lipolytic Yeast Candida aaseri SH14 Using CRISPR-Cas9 System 원문보기

Microorganisms, v.8 no.4, 2020년, pp.526 -   

Hilmi Ibrahim, Zool (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea) ,  Bae, Jung-Hoon (abedozo@gmail.com (Z.H.I.)) ,  Lee, Sun-Hee (hoon@kribb.re.kr (J.-H.B.)) ,  Sung, Bong Hyun (werfg@kribb.re.kr (S.-H.L.)) ,  Ab Rashid, Ahmad Hazri (bhsung@kribb.re.kr (B.H.S.)) ,  Sohn, Jung-Hoon (Synthetic Biology & Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

A lipolytic yeast Candida aaseri SH14 that can utilise long-chain fatty acids as the sole carbon source was isolated from oil palm compost. To develop this strain as a platform yeast for the production of bio-based chemicals from renewable plant oils, a genetic manipulation system using CRISPR-Cas9 ...

Keyword

참고문헌 (45)

  1. 1. Kim H. Yoo S.J. Kang H.A. Yeast synthetic biology for the production of recombinant therapeutic proteins FEMS Yeast Res. 2015 15 1 16 10.1111/1567-1364.12195 

  2. 2. Darvishi F. Fathi Z. Ariana M. Moradi H. Yarrowia lipolytica as a workhorse for biofuel production Biochem. Eng. J. 2017 127 87 96 10.1016/j.bej.2017.08.013 

  3. 3. Nielsen J. Larsson C. van Maris A. Pronk J. Metabolic engineering of yeast for production of fuels and chemicals Curr. Opin. Biotechnol. 2013 24 398 404 10.1016/j.copbio.2013.03.023 23611565 

  4. 4. Deng Y. Ma L. Mao Y. Biological production of adipic acid from renewable substrates: Current and future methods Biochem. Eng. J. 2016 105 16 26 10.1016/j.bej.2015.08.015 

  5. 5. Bart J.C.J. Cavallaro S. Transiting from Adipic acid to bioadipic acid. 1, petroleum-based processes Ind. Eng. Chem. Res. 2015 54 1 46 10.1021/ie5020734 

  6. 6. Polen T. Spelberg M. Bott M. Toward biotechnological production of adipic acid and precursors from biorenewables J. Biotechnol. 2013 167 75 84 10.1016/j.jbiotec.2012.07.008 22824738 

  7. 7. Zhao M. Huang D. Zhang X. Koffas M.A. Zhou J. Deng Y. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway Metab. Eng. 2018 47 254 262 10.1016/j.ymben.2018.04.002 29625225 

  8. 8. Sun J. Raza M. Sun X. Yuan Q. Biosynthesis of adipic acid via microaerobic hydrogenation of cis,cis -muconic acid by oxygen-sensitive enoate reductase J. Biotechnol. 2018 280 49 54 10.1016/j.jbiotec.2018.06.304 29885337 

  9. 9. Picataggio S. Rohrer T. Deanda K. Lanning D. Reynolds R. Mielenz J. Eirich L.D. Metabolic engineering of Candida tropicalis for the production of long-chain dicarboxylic acids Nat. Biotechnol. 1992 10 894 898 10.1038/nbt0892-894 

  10. 10. Karlsson E. Mapelli V. Olsson L. Adipic acid tolerance screening for potential adipic acid production hosts Microb. Cell Fact. 2017 16 20 10.1186/s12934-017-0636-6 28143563 

  11. 11. Tsuge Y. Kawaguchi H. Sasaki K. Kondo A. Engineering cell factories for producing building block chemicals for bio-polymer synthesis Microb. Cell Fact. 2016 15 19 10.1186/s12934-016-0411-0 26794242 

  12. 12. Lee S.H. Jeong H. Ko H.J. Bae J.H. Ibrahim Z.H. Sung B.H. Sohn J.H. Draft Genome Sequence of a Lipolytic Yeast. Candida aaseri SH-14 Genome Announc. 2018 5 e00373-17 10.1128/genomeA.00373-17 28522723 

  13. 13. Nakase T. Four new yeast found in Japan J. Gen. Appl. Microbiol. 1971 17 469 478 10.2323/jgam.17.469 

  14. 14. Pfuller R. Graser Y. Erhard M. Groenewald M. A novel flucytosine-resistant yeast species, Candida pseudoaaseri , causes disease in a cancer patient J. Clin. Microbiol. 2011 49 4195 4202 10.1128/JCM.05090-11 21976765 

  15. 15. Ribeiro O. Gombert A.K. Teixeira J.A. Domingues L. Application of the Cre-loxP system for multiple gene disruption in the yeast Kluyveromyces marxianus J. Biotechnol. 2007 131 20 26 10.1016/j.jbiotec.2007.05.027 17624462 

  16. 16. Staab J.F. Sundstrom P. URA3 as a selectable marker for disruption and virulence assessment of Candida albicans genes Trends Microbiol. 2003 11 69 73 10.1016/S0966-842X(02)00029-X 12598128 

  17. 17. Jinek M. Chylinski K. Fonfara I. Hauer M. Doudna J.A. Charpentier E. A Programmable Dual-RNA?Guided DNA Endonuclease in Adaptive Bacterial Immunity Science 2012 337 816 822 10.1126/science.1225829 22745249 

  18. 18. Hsu P.D. Lander E.S. Zhang F. Development and applications of CRISPR-Cas9 for genome engineering Cell 2014 157 1262 1278 10.1016/j.cell.2014.05.010 24906146 

  19. 19. Stovicek V. Borodina I. Forster J. CRISPR-Cas system enables fast and simple genome editing of industrial Saccharomyces cerevisiae strains Metab. Eng. Commun. 2015 2 13 22 10.1016/j.meteno.2015.03.001 

  20. 20. Jakoiunas T. Jensen M.K. Keasling J.D. CRISPR/Cas9 advances engineering of microbial cell factories Metab. Eng. 2016 34 44 59 10.1016/j.ymben.2015.12.003 26707540 

  21. 21. Xie K. Yang Y. RNA-Guided genome editing in plants using a CRISPR-Cas system Mol. Plant 2013 6 1975 1983 10.1093/mp/sst119 23956122 

  22. 22. Rahdar M. McMahon M.A. Prakash T.P. Swayze E.E. Bennett C.F. Cleveland D.W. Synthetic CRISPR RNA-Cas9?guided genome editing in human cells Proc. Natl. Acad. Sci. USA 2015 112 E7110 E7117 10.1073/pnas.1520883112 26589814 

  23. 23. Wang L. Deng A. Zhang Y. Liu S. Liang Y. Bai H. Cui D. Qiu Q. Shang X. Yang Z. Efficient CRISPR-Cas9 mediated multiplex genome editing in yeasts Biotechnol. Biofuels 2018 11 1 16 10.1186/s13068-018-1271-0 29321810 

  24. 24. Jiang F. Doudna J.A. CRISPR?Cas9 Structures and Mechanisms Annu. Rev. Biophys. 2017 505 531 10.1146/annurev-biophys-062215-010822 28375731 

  25. 25. Weninger A. Hatzl A.M. Schmid C. Vogl T. Glieder A. Combinatorial optimization of CRISPR/Cas9 expression enables precision genome engineering in the methylotrophic yeast Pichia pastoris J. Biotechnol. 2016 235 139 149 10.1016/j.jbiotec.2016.03.027 27015975 

  26. 26. Horwitz A.A. Walter J.M. Schubert M.G. Kung S.H. Hawkins K. Platt D.M. Hernday A.D. Mahatdejkul-Meadows T. Szeto W. Chandran S.S. Efficient Multiplexed Integration of Synergistic Alleles and Metabolic Pathways in Yeasts via CRISPR-Cas Cell Syst. 2015 1 88 96 10.1016/j.cels.2015.02.001 27135688 

  27. 27. Vyas V.K. Barrasa M.I. Fink G.R. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families Sci. Adv. 2015 1 e1500248 10.1126/sciadv.1500248 25977940 

  28. 28. Lombardi L. Turner S.A. Zhao F. Butler G. Gene editing in clinical isolates of Candida parapsilosis using CRISPR/Cas9 Sci. Rep. 2017 7 1 11 10.1038/s41598-017-08500-1 28127051 

  29. 29. Enkler L. Richer D. Marchand A.L. Ferrandon D. Jossinet F. Genome engineering in the yeast pathogen Candida glabrata using the CRISPR-Cas9 system Sci. Rep. 2016 6 35766 10.1038/srep35766 27767081 

  30. 30. DiCarlo J.E. Norville J.E. Mali P. Rios X. Aach J. Church G.M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems Nucleic Acids Res. 2013 41 4336 4343 10.1093/nar/gkt135 23460208 

  31. 31. Kondo K. Saito T. Kajiwara S. Takagi M. Misawa N. A transformation system for the yeast Candida utilis : Use of a modified endogenous ribosomal protein gene as a drug-resistant marker and ribosomal DNA as an integration target for vector DNA J. Bacteriol. 1995 177 7171 7177 10.1128/JB.177.24.7171-7177.1995 8522525 

  32. 32. Gupta N. Rathi P. Gupta R. Simplified para-nitrophenyl palmitate assay for lipases and esterases Analytical Biochem. 2002 311 98 99 10.1016/S0003-2697(02)00379-2 

  33. 33. Funk I. Rimmel N. Schorsch C. Sieber V. Schmid J. Production of dodecanedioic acid via biotransformation of low cost plant-oil derivatives using Candida tropicalis J. Ind. Microbiol. Biotechnol. 2017 44 1491 1502 10.1007/s10295-017-1972-6 28756564 

  34. 34. Cao Z. Gao H. Liu M. Jiao P. Engineering the acetyl-CoA transportation system of Candida tropicalis enhances the production of dicarboxylic acid Biotechnol. J. 2006 1 68 74 10.1002/biot.200500008 16892226 

  35. 35. Lee H. Han C. Lee H.W. Park G. Jeon W. Ahn J. Lee H. Development of a promising microbial platform for the production of dicarboxylic acids from biorenewable resources Biotechnol. Biofuels 2018 11 310 10.1186/s13068-018-1310-x 30455739 

  36. 36. Cao W. Li H. Luo J. Yin J. Wan Y. High-level productivity of α,ω-dodecanedioic acid with a newly isolated Candida viswanathii strain J. Ind. Microbiol. Biotechnol. 2017 44 1191 1202 10.1007/s10295-017-1948-6 28451837 

  37. 37. Schwartz C.M. Hussain M.S. Blenner M. Wheeldon I. Synthetic RNA Polymerase III Promoters Facilitate High-Efficiency CRISPR-Cas9-Mediated Genome Editing in Yarrowia lipolytica ACS Synth. Biol. 2016 5 356 359 10.1021/acssynbio.5b00162 26714206 

  38. 38. Ryan O.W. Skerker J.M. Maurer M.J. Li X. Tsai J.C. Poddar S. Lee M.E. DeLoache W. Dueber J.E. Arkin A.P. Selection of chromosomal DNA libraries using a multiplex CRISPR system Elife 2014 3 e03703 10.7554/eLife.03703 

  39. 39. Mans R. van Rossum H.M. Wijsman M. Backx A. Kuijpers N.G. van den Broek M. Daran-Lapujade P. Pronk J.T. van Maris A.J. Daran J.M.G. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae FEMS Yeast Res. 2015 15 fov004 10.1093/femsyr/fov004 25743786 

  40. 40. Arras S.D. Chua S.M. Wizrah M.S. Faint J.A. Yap A.S. Fraser J.A. Targeted genome editing via CRISPR in the pathogen cryptococcus neoformans PLoS ONE 2016 11 e0164322 10.1371/journal.pone.0164322 27711143 

  41. 41. Kieliszek M. Kot A.M. Bzducha-Wrobel A. BŁaejak S. Gientka I. Kurcz A. Biotechnological use of Candida yeasts in the food industry: A review Fungal. Biol. Rev. 2017 31 185 198 10.1016/j.fbr.2017.06.001 

  42. 42. Pfaller M.A. Castanheira M. Messer S.A. Moet G.J. Jones R.N. Variation in Candida spp. distribution and antifungal resistance rates among bloodstream infection isolates by patient age: Report from the SENTRY Antimicrobial Surveillance Program (2008?2009) Diagn. Microbiol. Infect. Dis. 2010 68 278 283 10.1016/j.diagmicrobio.2010.06.015 20846808 

  43. 43. Wang H.J. Le Dall M.T. Wach Y. Laroche C. Belin J.M. Gaillardin C. Nicaud J.M. Evaluation of acyl coenzyme A oxidase (Aox) isozyme function in the n-alkane-assimilating yeast Yarrowia lipolytica J. Bacteriol. 1999 181 5140 5148 10.1128/JB.181.17.5140-5148.1999 10464181 

  44. 44. Fu Y. Foden J.A. Khayter C. Maeder M.L. Reyon D. Joung J.K. Sander J.D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells Nat. Biotechnol. 2013 31 822 826 10.1038/nbt.2623 23792628 

  45. 45. Hsu P.D. Scott D.A. Weinstein J.A. Ran F.A. Konermann S. Agarwala V. Li Y. Fine E.J. Wu X. Shalem O. DNA targeting specificity of RNA-guided Cas9 nucleases Nat. Biotechnol. 2013 31 827 832 10.1038/nbt.2647 23873081 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로