$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Latilactobacillus curvatus : A Candidate Probiotic with Excellent Fermentation Properties and Health Benefits 원문보기

Foods, v.9 no.10, 2020년, pp.1366 -   

Chen, Ying (State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China) ,  Yu, Leilei (edyulei@126.com (L.Y.)) ,  Qiao, Nanzhen (cyingjiangnan@163.com (Y.C.)) ,  Xiao, Yue (nanzhen.qiao@gmail.com (N.Q.)) ,  Tian, Fengwei (xiaoyue_jiangnan@163.com (Y.X.)) ,  Zhao, Jianxin (fwtian@jiangnan.edu.cn (F.T.)) ,  Zhang, Hao (zhaojianxin@jiangnan.edu.cn (J.Z.)) ,  Chen, Wei (zhanghao61@jiangnan.edu.cn (H.Z.)) ,  Zhai, Qixiao (chenwei66@jiangnan.edu.cn (W.C.))

Abstract AI-Helper 아이콘AI-Helper

Latilactobacillus curvatus is a candidate probiotic that has been included in the list of recommended biological agents for certification by the European Food Safety Authority. According to the published genomic information, L. curvatus has several genes that encode metabolic pathways of carbohydrat...

주제어

참고문헌 (137)

  1. 1. Bourdichon F. Berger B. Casaregola S. Farrokh C. Frisvad J.C. Gerds M.L. Hammes W.P. Harnett J. Huys G. Laulund S. Safety demonstration of microbial food cultures (MFC) in fermented food products Bull. Int. Dairy Fed. 2012 455 62 

  2. 2. EFSA Panel on Biological Hazards Scientific Opinion on the maintenance of the list of QPS biological agents intentionally added to food and feed (2013 update) EFSA J. 2013 11 3449 10.2903/j.efsa.2013.3449 

  3. 3. Hammes W.P. Hertel C. Lactobacillus Bergey’s Manual of Systematics of Archaea and Bacteria John Wiley & Sons, Inc. Hoboken, NJ, USA 2015 1 76 

  4. 4. Lucquin I. Zagorec M. Champomier-Verges M. Chaillou S. Fingerprint of lactic acid bacteria population in beef carpaccio is influenced by storage process and seasonal changes Food Microbiol. 2012 29 187 196 10.1016/j.fm.2011.08.001 22202872 

  5. 5. Chaillou S. Chaulot-Talmon A. Caekebeke H. Cardinal M. Christieans S. Denis C. Desmonts M.H. Dousset X. Feurer C. Hamon E. Origin and ecological selection of core and food-specific bacterial communities associated with meat and seafood spoilage ISME J. 2015 9 1105 1118 10.1038/ismej.2014.202 25333463 

  6. 6. Kask S. Adamberg K. Orłowski A. Vogensen F.K. Møller P.L. Ardo Y. Paalme T. Physiological properties of Lactobacillus paracasei , L. danicus and L. curvatus strains isolated from Estonian semi-hard cheese Food Res. Int. 2003 36 1037 1046 10.1016/j.foodres.2003.08.002 

  7. 7. Vogelxy R.F. Lohmann M. Nguyen M. MolecuIar characterization of Lactobacillus curvatus and Lact. sake isolated from sauerkraut and their application in sausage fermentations J. Appl. Microbiol. 1993 74 295 300 10.1111/j.1365-2672.1993.tb03029.x 

  8. 8. Nakano K. Shiroma A. Tamotsu H. Ohki S. Shimoji M. Ashimine N. Shinzato M. Minami M. Nakanishi T. Teruya K. First Complete Genome Sequence of the Skin-Improving Lactobacillus curvatus Strain FBA2, Isolated from Fermented Vegetables, Determined by PacBio Single-Molecule Real-Time Technology Genome Announc. 2016 4 10.1128/genomeA.00884-16 

  9. 9. Jung J.Y. Lee S.H. Kim J.M. Park M.S. Bae J.W. Hahn Y. Madsen E.L. Jeon C.O. Metagenomic analysis of kimchi, a traditional Korean fermented food Appl. Environ. Microbiol. 2011 77 2264 2274 10.1128/AEM.02157-10 21317261 

  10. 10. Michel E. Monfort C. Deffrasnes M. Guezenec S. Lhomme E. Barret M. Sicard D. Dousset X. Onno B. Characterization of relative abundance of lactic acid bacteria species in French organic sourdough by cultural, qPCR and MiSeq high-throughput sequencing methods Int. J. Food. Microbiol. 2016 239 35 43 10.1016/j.ijfoodmicro.2016.07.034 27539249 

  11. 11. Bulgasem B.Y. Lani M.N. Hassan Z. Wan Yusoff W.M. Fnaish S.G. Antifungal Activity of Lactic Acid Bacteria Strains Isolated from Natural Honey against Pathogenic Candida Species Mycobiology 2016 44 302 309 10.5941/MYCO.2016.44.4.302 28154488 

  12. 12. Koleva Z. Dedov I. Kizheva J. Lipovanska R. Moncheva P. Hristova P. Lactic acid microflora of the gut of snail Cornu aspersum Biotechnol. Biotechnol. Equip. 2014 28 627 634 10.1080/13102818.2014.947071 26019550 

  13. 13. Zommiti M. Connil N. Hamida J.B. Ferchichi M. Probiotic Characteristics of Lactobacillus curvatus DN317, a Strain Isolated from Chicken Ceca Probiotics Antimicrob. Proteins 2017 9 415 424 10.1007/s12602-017-9301-y 28741151 

  14. 14. Dal Bello F. Walter J. Hammes W.P. Hertel C. Increased complexity of the species composition of lactic acid bacteria in human feces revealed by alternative incubation condition Microb. Ecol. 2003 45 455 463 10.1007/s00248-003-2001-z 12704557 

  15. 15. Kandler O. Abo-Elnaga I.G. On the taxonomy of genus Lactobacillus Beijerinck I. Subgenus Streptobacterium Orla Jensen Zent. fur Bakteriol. Parasitenkd. Infekt. Hyg. Zweite Nat. Abt. Allg. Landwirtsch. Tech. Mikrobiol. 1965 119 1 36 

  16. 16. Hammes W. Lactic acid bacteria in meat fermentation FEMS Microbiol. Lett. 1990 87 165 173 10.1111/j.1574-6968.1990.tb04886.x 

  17. 17. Zheng J.S. Wittouck S. Salvetti E. Franz C.M.A.P. Harris H.M.B. Mattarelli P. Toole P.W.O. Pot B. Vandamme P. Walter J. A taxonomic note on the genus Lactobacillus : Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae Int. J. Syst. Evol. Microbiol. 2020 70 2782 2858 10.1099/ijsem.0.004107 32293557 

  18. 18. Sun Z. Harris H.M. McCann A. Guo C. Argimon S. Zhang W. Yang X. Jeffery I.B. Cooney J.C. Kagawa T.F. Expanding the biotechnology potential of lactobacilli through comparative genomics of 213 strains and associated genera Nat. Commun. 2015 6 8322 10.1038/ncomms9322 26415554 

  19. 19. Berthier F. Ehrlich S.D. Genetic diversity within Lactobacillus sakei and Lactobacillus curvatus and design of PCR primers for its detection using randomly amplified polymorphic DNA Int. J. Syst. Bacteriol. 1999 49 997 1007 10.1099/00207713-49-3-997 10425756 

  20. 20. Petrick H.A.R. Ambrosio R.E. Holzapfel W.H. Isolation of a DNA Probe for Lactobacillus curvatus Appl. Environ. Microbiol. 1988 54 405 408 10.1128/AEM.54.2.405-408.1988 16347554 

  21. 21. De Souza Barbosa M. Todorov S.D. Ivanova I. Chobert J.M. Haertle T. de Melo Franco B.D.G. Improving safety of salami by application of bacteriocins produced by an autochthonous Lactobacillus curvatus isolate Food Microbiol. 2015 46 254 262 10.1016/j.fm.2014.08.004 25475294 

  22. 22. Tichaczek P.S. Nissen-Meyer J. Nes I.F. Vogel R.F. Hammes W.P. Characterization of the Bacteriocins Curvacin A from Lactobacillus curvatus LTH1174 and Sakacin P from L. sake LTH673 Syst. Appl. Microbiol. 1992 15 460 468 10.1016/S0723-2020(11)80223-7 

  23. 23. Torriani S. Reenen C.A.V. Klein G. Reuter G. Dellaglio F. Dicks L.M.T. Lactobacillus curvatus subsp. curvatus subsp. nov. and Lactobacillus curvatus subsp. melibiosus subsp. nov. and Lactobacillus sake subsp. sake subsp. nov. and Lactobacillus sake subsp. carnosus subsp. nov., New Subspecies of Lactobacillus curvatus Abo-Elnaga and Kandler 1965 and Lactobacillus sake Katagiri, Kitahara, and Fukami 1934 (Klein et al. 1996, Emended Descriptions), Respectively Int. J. Syst. Bacteriol. 1996 46 1158 1163 10.1099/00207713-46-4-1158 8863451 

  24. 24. Koort J. Vandamme P. Schillinger U. Holzapfel W. Bjorkroth J. Lactobacillus curvatus subsp. melibiosus is a later synonym of Lactobacillus sakei subsp. carnosus Int. J. Syst. Evol. Microbiol. 2004 54 1621 1626 10.1099/ijs.0.63164-0 15388719 

  25. 25. Hebert E.M. Saavedra L. Taranto M.P. Mozzi F. Magni C. Nader M.E. Font de Valdez G. Sesma F. Vignolo G. Raya R.R. Genome sequence of the bacteriocin-producing Lactobacillus curvatus strain CRL705 J. Bacteriol. 2012 194 538 539 10.1128/JB.06416-11 22207745 

  26. 26. Teran L.C. Coeuret G. Raya R. Zagorec M. Champomier-Verges M.C. Chaillou S. Phylogenomic Analysis of Lactobacillus curvatus Reveals Two Lineages Distinguished by Genes for Fermenting Plant-Derived Carbohydrates Genome Biol. Evol. 2018 10 1516 1525 10.1093/gbe/evy106 29850855 

  27. 27. Eisenbach L. Janssen D. Ehrmann M.A. Vogel R.F. Comparative genomics of Lactobacillus curvatus enables prediction of traits relating to adaptation and strategies of assertiveness in sausage fermentation Int. J. Food. Microbiol. 2018 286 37 47 10.1016/j.ijfoodmicro.2018.06.025 30031987 

  28. 28. Mauriello G. Ercolini D. La Storia A. Casaburi A. Villani F. Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y J. Appl. Microbiol. 2004 97 314 322 10.1111/j.1365-2672.2004.02299.x 15239697 

  29. 29. Sun F. Kong B. Chen Q. Han Q. Diao X. N-nitrosoamine inhibition and quality preservation of Harbin dry sausages by inoculated with Lactobacillus pentosus , Lactobacillus curvatus and Lactobacillus sake Food Control 2017 10.1016/j.foodcont.2016.11.018 

  30. 30. Fadda S. Lopez C. Vignolo G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers Meat Sci. 2010 86 66 79 10.1016/j.meatsci.2010.04.023 20619799 

  31. 31. Jo S.G. Noh E.J. Lee J.Y. Kim G. Choi J.H. Lee M.E. Song J.H. Chang J.Y. Park J.H. Lactobacillus curvatus WiKim38 isolated from kimchi induces IL-10 production in dendritic cells and alleviates DSS-induced colitis in mice J. Microbiol. 2016 54 503 509 10.1007/s12275-016-6160-2 27350616 

  32. 32. Yoo S.R. Kim Y.J. Park D.Y. Jung D.J. Jeon S.M. Ahn Y.T. Huh C.S. McGrego R. Choi M.S. Probiotics, L. Plantarum and L. Curvatus In Combination Alter Hepatic Lipid Metabolism and Suppress Diet-Induced Obesity Obesity 2013 21 2571 2578 10.1002/oby.20428 23512789 

  33. 33. Ahn H.Y. Kim M. Ahn Y.T. Sim J.H. Choi I.D. Lee S.H. Lee J.H. The triglyceride-lowering effect of supplementation with dual probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032: Reduction of fasting plasma lysophosphatidylcholines in nondiabetic and hypertriglyceridemic subjects Nutr. Metab. Cardiovasc. Dis. 2015 25 724 733 10.1016/j.numecd.2015.05.002 26044516 

  34. 34. Park D.Y. Ahn Y.T. Park S.H. Huh C.S. Yoo S.R. Yu R. Sung M.K. McGregor R.A. Choi M.S. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity PLoS ONE 2013 8 e59470 10.1371/journal.pone.0059470 23555678 

  35. 35. Katsuki R. Sakata S. Nakao R. Oishi K. Nakamura Y. Lactobacillus curvatus CP2998 Prevents Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes J. Nutr. Sci. Vitaminol. 2019 65 455 458 10.3177/jnsv.65.455 31666484 

  36. 36. Chaillou S. Champomier-Verges M.C. Cornet M. Crutz-Le Coq A.M. Dudez A.M. Martin V. Beaufils S. Darbon-Rongere E. Bossy R. Loux V. The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K Nat. Biotechnol. 2005 23 1527 1533 10.1038/nbt1160 16273110 

  37. 37. Lee S.H. Jung M.Y. Song J.H. Lee M. Chang J.Y. Complete Genome Sequence of Lactobacillus curvatus Strain WiKim38 Isolated from Kimchi Genome Announc. 2017 5 503 509 10.1128/genomeA.00273-17 28473381 

  38. 38. Teran L.C. Coeuret G. Raya R. Champomier-Verges M.C. Chaillou S. Draft Genome Sequence of Lactobacillus curvatus FLEC03, a Meat-Borne Isolate from Beef Carpaccio Packaged in a Modified Atmosphere Genome Announc. 2017 5 10.1128/genomeA.00584-17 28663298 

  39. 39. Kyoui D. Mikami N. Yamamoto H. Kawarai T. Ogihara H. Complete Genome Sequence of Lactobacillus curvatus NFH-Km12, Isolated from the Japanese Traditional Fish Fermented Food Kabura-zushi Microbiol. Resour. Announc. 2018 7 10.1128/MRA.00823-18 30533612 

  40. 40. Jans C. Lagler S. Lacroix C. Meile L. Stevens M.J.A. Complete Genome Sequences of Lactobacillus curvatus KG6, L. curvatus MRS6, and Lactobacillus sakei FAM18311, Isolated from Fermented Meat Products Genome Announc. 2017 5 10.1128/genomeA.00915-17 

  41. 41. Inglin R.C. Meile L. Stevens M.J.A. Draft Genome Sequences of 43 Lactobacillus Strains from the Species L. curvatus , L. fermentum , L. paracasei , L. plantarum , L. rhamnosus , and L. sakei , Isolated from Food Product Genome Announc. 2017 5 e00632-17 10.1128/genomeA.00632-17 28751390 

  42. 42. Cousin F.C. Lynch S.M. Harris H.M.B. McCann A. Lynch D.B. Neville B.A. Irisawa T. Okada S. Endo A. O’Toole P.W. Detection and Genomic Characterization of Motility in Lactobacillus curvatus : Confirmation of Motility in a Species outside the Lactobacillus salivarius Clade Appl. Environ. Microbiol. 2014 81 1297 1308 10.1128/AEM.03594-14 

  43. 43. Arndt D. Grant J.R. Marcu A. Sajed T. Pon A. Liang Y. Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool Nucleic Acids Res. 2016 44 W16 W21 10.1093/nar/gkw387 27141966 

  44. 44. Barrangou R. Fremaux C. Deveau H. Richards M. Boyaval P. Moineau S. Romero D.A. Horvath P. CRISPR provides acquired resistance against viruses in prokaryotes Science 2007 315 1709 1712 10.1126/science.1138140 17379808 

  45. 45. Nyquist O.L. McLeod A. Brede D.A. Snipen L. Aakra A. Nes I.F. Comparative genomics of Lactobacillus sakei with emphasis on strains from meat Mol. Genet. Genomics 2011 285 297 311 10.1007/s00438-011-0608-1 21369871 

  46. 46. Verge M.-C.C. Manuel Z. Francoise M.-D. Perez-Martinez G. Zagorec M. Ehrlich S.D. Relationships between arginine degradation, pH and survival in Lactobacillus sakei FEMS Microbiol. Lett. 1999 2 297 304 10.1111/j.1574-6968.1999.tb08809.x 

  47. 47. Wiame E. Lamosa P. Santos H. Van Schaftingen E. Identification of glucoselysine-6-phosphate deglycase, an enzyme involved in the metabolism of the fructation product glucoselysine Biochem. J. 2005 392 263 269 10.1042/BJ20051183 16153181 

  48. 48. Stentz R. Zagorec M. Ribose utilization in Lactobacillus sakei : Analysis of the regulation of the rbs operon and putative involvement of a new transporter J. Microbiol. Biotechnol. 1999 1 165 173 

  49. 49. Yew W.S. Gerlt J.A. Utilization of L-ascorbate by Escherichia coli K-12: Assignments of functions to products of the yjf-sga and yia-sgb operons J. Bacteriol. 2002 184 302 306 10.1128/JB.184.1.302-306.2002 11741871 

  50. 50. Salminen S. Wright A.v. Morelli L. Marteau P. Brassart D. Vos W.M.d. Fonden R. Saxelin M. Collins K. Mogensen G. Demonstration of safety of probiotics―A review Int. J. Food Microbiol. 1998 44 93 106 10.1016/S0168-1605(98)00128-7 9849787 

  51. 51. Danielsen M. Wind A. Susceptibility of Lactobacillus spp. to antimicrobial agents Int. J. Food Microbiol. 2003 82 1 11 10.1016/S0168-1605(02)00254-4 12505455 

  52. 52. Hong S.W. Kim J.H. Bae H.J. Ham J.S. Yoo J.G. Chung K.S. Oh M.H. Selection and characterization of broad-spectrum antibacterial substance-producing Lactobacillus curvatus PA40 as a potential probiotic for feed additives Anim. Sci. J. 2018 89 1459 1467 10.1111/asj.13047 30152177 

  53. 53. Ahmadova A. Todorov S.D. Hadji-Sfaxi I. Choiset Y. Rabesona H. Messaoudi S. Kuliyev A. Franco B.D. Chobert J.M. Haertle T. Antimicrobial and antifungal activities of Lactobacillus curvatus strain isolated from homemade Azerbaijani cheese Anaerobe 2013 20 42 49 10.1016/j.anaerobe.2013.01.003 23357316 

  54. 54. Ammor M.S. Florez A.B. Mayo B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria Food Microbiol. 2007 24 559 570 10.1016/j.fm.2006.11.001 17418306 

  55. 55. Perreten V. Schwarz F.V. Teuber M. Levy S.B. Mdt(A), a new efflux protein conferring multiple antibiotic resistance in Lactococcus lactis and Escherichia coli Antimicrob. Agents Chemother. 2001 45 1109 1114 10.1128/AAC.45.4.1109-1114.2001 11257023 

  56. 56. Zhou J.S. Pillidge C.J. Gopal P.K. Gill H.S. Antibiotic susceptibility profiles of new probiotic Lactobacillus and Bifidobacterium strains Int. J. Food Microbiol. 2005 98 211 217 10.1016/j.ijfoodmicro.2004.05.011 15681048 

  57. 57. Alcock B.P. Raphenya A.R. Lau T.T.Y. Tsang T.T.K. Bouchard M. Edalatmand A. Huynh W. Nguyen A.L.V. Cheng A.A. Liu S.H. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database Nucleic. Acids Res. 2020 48 D517 D525 10.1093/nar/gkz935 31665441 

  58. 58. Jia B.F. Raphenya A.R. Alcock B. Waglechner N. Guo P.Y. Tsang K.K. Lago B.A. Dave B.M. Pereira S. Sharma A.N. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database Nucleic Acids Res. 2017 45 D566 D573 10.1093/nar/gkw1004 27789705 

  59. 59. Collado M.C. Meriluoto J. Salminen S. Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus Lett. Appl. Microbiol. 2007 45 454 460 10.1111/j.1472-765X.2007.02212.x 17897389 

  60. 60. Garcia-Cayuela T. Korany A.M. Bustos I.P. Gomez de Cadinanos L. Requena T. Pelaez C. Martinez-Cuesta M.C. Adhesion abilities of dairy Lactobacillus plantarum strains showing an aggregation phenotype Food Res. Int. 2014 57 44 50 10.1016/j.foodres.2014.01.010 

  61. 61. Corzo G. Gilliland S.E. Bile Salt Hydrolase Activity of Three Strains of Lactobacillus acidophilus J. Dairy Sci. 1999 82 472 10.3168/jds.S0022-0302(99)75256-2 10194664 

  62. 62. Garcia-Ruiz A. Gonzalez de Llano D. Esteban-Fernandez A. Requena T. Bartolome B. Moreno-Arribas M.V. Assessment of probiotic properties in lactic acid bacteria isolated from wine Food Microbiol. 2014 44 220 225 10.1016/j.fm.2014.06.015 25084666 

  63. 63. Cunningham F.E. Proctor V.A. Goetsch S.J. Egg-white lysozyme as a food preservative: An overview World Poultry Sci. J. 1991 47 141 10.1079/WPS19910015 

  64. 64. Fernandez M.F. Boris S. Barbes C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract J. Appl. Microbiol. 2003 94 449 455 10.1046/j.1365-2672.2003.01850.x 12588553 

  65. 65. Gilliland S.E. Staley T.E. Bush L.J. Importance of bile tolerance of Lactobacillus acidophilus used as a dietary adjunct J. Dairy Sci. 1984 67 3045 3051 10.3168/jds.S0022-0302(84)81670-7 6442304 

  66. 66. Jin J.H. Zhang B. Guo H. Cui J. Jiang L. Song S. Sun M. Ren F.Z. Mechanism Analysis of Acid Tolerance Response of Bifidobacterium longum subsp. longum BBMN 68 by Gene Expression Profile Using RNA-Sequencing PLoS ONE 2012 7 e50777 10.1371/journal.pone.0050777 23236393 

  67. 67. Jiang Y. Ren F. Liu S. Zhao L. Guo H. Hou C. Enhanced acid tolerance in Bifidobacterium longum by adaptive evolution: Comparison of the genes between the acid-resistant variant and wild-type strain J. Microbiol. Biotechnol. 2016 26 452 460 10.4014/jmb.1508.08030 26608165 

  68. 68. Mathara J.M. Schillinger U. Kutima P.M. Mbugua S.K. Guigas C. Franz C. Holzapfel W.H. Functional properties of Lactobacillus plantarum strains isolated from Maasai traditional fermented milk products in Kenya Curr. Microbiol. 2008 56 315 321 10.1007/s00284-007-9084-6 18175177 

  69. 69. Erkkila S. Petaja E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use Meat Sci. 2000 55 297 300 10.1016/S0309-1740(99)00156-4 22061286 

  70. 70. Piddock L.J. Multidrug-resistance efflux pumps―Not just for resistance Nat. Rev. Microbiol. 2006 4 629 636 10.1038/nrmicro1464 16845433 

  71. 71. Bai X. Byun B.Y. Mah J.H. Formation and destruction of biogenic amines in Chunjang (a black soybean paste) and Jajang (a black soybean sauce) Food Chem. 2013 141 1026 1031 10.1016/j.foodchem.2013.03.054 23790882 

  72. 72. Santos M.H.S. Biogenic amines: Their importance in foods Int. J. Food Microbiol. 1996 29 213 231 10.1016/0168-1605(95)00032-1 8796424 

  73. 73. Landete J.M. Ferrer S. Polo L. Parodo I. Biogenic amines in wines from three Spanish regions J. Agric. Food Chem. 2005 53 1119 1124 10.1021/jf049340k 15713028 

  74. 74. Lazaro C.A. Conte-Junior C.A. Canto A.C. Monteiro M.L.G. Costa-Lima B. Cruz A.G.D. Marsico E.T. Franco R.M. Biogenic amines as bacterial quality indicators in different poultry meat species Lwt Food Sci. Technol. 2015 60 15 21 10.1016/j.lwt.2014.09.025 

  75. 75. Guarcello R. De Angelis M. Settanni L. Formiglio S. Gaglio R. Minervini F. Moschetti G. Gobbetti M. Selection of Amine-Oxidizing Dairy Lactic Acid Bacteria and Identification of the Enzyme and Gene Involved in the Decrease of Biogenic Amines Appl. Environ. Microbiol. 2016 82 6870 6880 10.1128/AEM.01051-16 27637883 

  76. 76. Li L. Wen X. Wen Z. Chen S. Wang L. Wei X. Evaluation of the Biogenic Amines Formation and Degradation Abilities of Lactobacillus curvatus From Chinese Bacon Front. Microbiol. 2018 9 1015 10.3389/fmicb.2018.01015 29867901 

  77. 77. Pachlova V. Bukova L. Flasarova R. Salek R.N. Dlabajova A. Butor I. Buka F. Biogenic amine production by nonstarter strains of Lactobacillus curvatus and Lactobacillus paracasei in the model system of Dutch-type cheese LWT 2018 97 730 735 10.1016/j.lwt.2018.07.045 

  78. 78. Landete J.M. Pardo I. Ferrer S. Tyramine and phenylethylamine production among lactic acid bacteria isolated from wine Int. J. Food Microbiol. 2007 115 364 368 10.1016/j.ijfoodmicro.2006.10.051 17307265 

  79. 79. Latorre-Moratalla M.L. Bover-Cid S. Bosch-Fuste J. Vidal-Carou M.C. Influence of technological conditions of sausage fermentation on the aminogenic activity of L. curvatus CTC273 Food Microbiol. 2012 29 43 48 10.1016/j.fm.2011.08.004 22029917 

  80. 80. Bardocz S. Polyamines in food and their consequences for food quality and human health Trends Food Sci. Technol. 1996 6 341 346 10.1016/S0924-2244(00)89169-4 

  81. 81. Freiding S. Gutsche K.A. Ehrmann M.A. Vogel R.F. Genetic screening of Lactobacillus sakei and Lactobacillus curvatus strains for their peptidolytic system and amino acid metabolism, and comparison of their volatilomes in a model system Syst. Appl. Microbiol. 2011 34 311 320 10.1016/j.syapm.2010.12.006 21570226 

  82. 82. Cid S.B. Miguelez-Arrizado M.J. Becker B. Holzapfel W.H. Vidal-Carou M.C. Amino acid decarboxylation by Lactobacillus curvatus CTC273 affected by the pH and glucose availability Food Microbiol. 2008 25 269 277 10.1016/j.fm.2007.10.013 18206769 

  83. 83. Dapkevicius M.L.N.E. Nout M.J.R. Rombouts F.M. Houben J.H. Wymenga W. Biogenic amine formation and degradation by potential fish silage starter microorganisms Int. J. Food Microbiol. 2000 57 107 114 10.1016/S0168-1605(00)00238-5 

  84. 84. Garcia-Ruiz A. Gonzalez-Rompinelli E.M. Bartolome B. Moreno-Arribas M.V. Potential of wine-associated lactic acid bacteria to degrade biogenic amines Int. J. Food. Microbiol. 2011 148 115 120 10.1016/j.ijfoodmicro.2011.05.009 21641669 

  85. 85. Riley M.A. Wertz J.E. Bacteriocins: Evolution, ecology, and application Annu. Rev. Microbiol. 2002 56 117 137 10.1146/annurev.micro.56.012302.161024 12142491 

  86. 86. Balciunas E.M. Castillo Martinez F.A. Todorov S.D. Franco B.D.G.D.M. Converti A. Oliveira R.P.D.S. Novel biotechnological applications of bacteriocins: A review Food Control 2013 32 134 142 10.1016/j.foodcont.2012.11.025 

  87. 87. Cotter P.D. Hill C. Ross R.P. Bacteriocins: Developing Innate Immunity for food Nat. Rev. Microbiol. 2005 3 777 788 10.1038/nrmicro1273 16205711 

  88. 88. Verluyten J. Messens W. Vuyst L.D. Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage Appl. Environ. Microbiol. 2004 70 2271 2278 10.1128/AEM.70.4.2271-2278.2004 15066822 

  89. 89. Mechoud M.A. Alvarez O.E. Cayre M.E. Castro M.P. Minahk C. Saavedra L. Sakacin G is the main responsible bacteriocin for the anti-listerial activity of meat-borne Lactobacillus curvatus ACU-1 Ann. Microbiol. 2017 67 615 621 10.1007/s13213-017-1288-9 

  90. 90. Bouttefroy A. Linder M. Milliere J.B. Predictive models of the combined effects of curvaticin 13, NaCl and pH on the behaviour of Listeria monocytogenes ATCC 15313 in broth J. Appl. Microbiol. 2000 88 919 929 10.1046/j.1365-2672.2000.01053.x 10849167 

  91. 91. Massani M.B. Molina V. Sanchez M. Renaud V. Eisenberg P. Vignolo G. Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: Effectiveness assessment in Wieners Int. J. Food Microbiol. 2014 178 7 12 10.1016/j.ijfoodmicro.2014.02.013 24667313 

  92. 92. Xiraphi N. Georgalaki M. Driessche G.V. Devreese B. Beeumen J.V. Tsakalidou E. Metaxopoulos J. Drosinos E.H. Purification and characterization of curvaticin L442, a bacteriocin produced by Lactobacillus curvatus L442 Antonie Van Leeuwenhoek 2006 89 19 26 10.1007/s10482-005-9004-3 16244793 

  93. 93. Cui Y. Zhang C. Wang Y. Shi J. Zhang L. Ding Z. Qu X. Cui H. Class IIa bacteriocins: Diversity and new developments Int. J. Mol. Sci. 2012 13 16668 16707 10.3390/ijms131216668 23222636 

  94. 94. Castellano P. Belfiore C. Fadda S. Vignolo G. A review of bacteriocinogenic lactic acid bacteria used as bioprotective cultures in fresh meat produced in Argentina Meat Sci. 2008 79 483 499 10.1016/j.meatsci.2007.10.009 22062909 

  95. 95. Rivas F.P. Castro M.P. Vallejo M. Marguet E. Campos C.A. Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface Meat Sci. 2014 97 475 479 10.1016/j.meatsci.2014.03.003 24769146 

  96. 96. Castro M.P. Palavecino N.Z. Herman C. Garro O.A. Campos C.A. Lactic acid bacteria isolated from artisanal dry sausages: Characterization of antibacterial compounds and study of the factors affecting bacteriocin production Meat Sci. 2011 87 321 329 10.1016/j.meatsci.2010.11.006 21131135 

  97. 97. Garve K.I. Murian P.M. Purification and Partial Amino Acid Sequence of Curvaticin FS47, a Heat-Stable Bacteriocin Produced by Lactobacillus curvatus FS4 Appl. Environ. Microbiol. 1994 60 2191 2195 10.1128/AEM.60.6.2191-2195.1994 8031103 

  98. 98. Zommiti M. Almohammed H. Ferchichi M. Purification and Characterization of a Novel Anti-Campylobacter Bacteriocin Produced by Lactobacillus curvatus DN317 Probiotics Antimicrob. Proteins 2016 8 191 201 10.1007/s12602-016-9237-7 27812926 

  99. 99. Casaburi A. Martino V.D. Ferranti P. Picariello L. Villani F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture Food Control 2016 59 31 45 10.1016/j.foodcont.2015.05.016 

  100. 100. Gomez-Sala B. Munoz-Atienza E. Diep D.B. Feito J. del Campo R. Nes I.F. Herranz C. Hernandez P.E. Cintas L.M. Biotechnological potential and in vitro safety assessment of Lactobacillus curvatus BCS35, a multibacteriocinogenic strain isolated from dry-salted cod (Gadus morhua) LWT 2019 112 10.1016/j.lwt.2019.05.117 

  101. 101. Dortu C. Huch M. Holzapfel W.H. Franz C.M. Thonart P. Anti-listerial activity of bacteriocin-producing Lactobacillus curvatus CWBI-B28 and Lactobacillus sakei CWBI-B1365 on raw beef and poultry meat Lett. Appl. Microbiol. 2008 47 581 586 10.1111/j.1472-765X.2008.02468.x 19120930 

  102. 102. Tiehaczek P.S. Vogel R.F. Hammes W.P. Cloning and sequencing of curA encoding curvacin A, the bacteriocin produced by Lactobacillus curvatus LTHl174 Arch. Microbiol. 1993 160 279 283 10.1007/BF00292077 7694558 

  103. 103. Simon L. Fremaux C. Cenatiempo Y. Berjeaud J.M. Sakacin g, a new type of antilisterial bacteriocin Appl. Environ. Microbiol. 2002 68 6416 6420 10.1128/AEM.68.12.6416-6420.2002 12450870 

  104. 104. Papagianni M. Anastasiadou S. Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications Microb. Cell Fact. 2009 8 3 10.1186/1475-2859-8-3 19133115 

  105. 105. Hammes W.P. Hertel C. Selection and improvement of lactic acid bacteria used in meat and sausage fermentation Dairy Sci. Technol. 1996 76 159 168 10.1051/lait:19961-214 

  106. 106. Vogel R.F. Pohle B.S. Tichaczek P.S. Hammes W.P. The Competitive Advantage of Lactobacillus curvatus LTH 1174 in Sausage Fermentations is Caused by Formation of Curvacin A Syst. Appl. Microbiol. 1993 16 457 462 10.1016/S0723-2020(11)80280-8 

  107. 107. Giello M. La Storia A. De Filippis F. Ercolini D. Villani F. Impact of Lactobacillus curvatus 54M16 on microbiota composition and growth of Listeria monocytogenes in fermented sausages Food Microbiol. 2018 72 1 15 10.1016/j.fm.2017.11.003 29407386 

  108. 108. Vogel B.F. Hansen L.T. Mordhorst H. Gram L. The survival of Listeria monocytogenes during long term desiccation is facilitated by sodium chloride and organic material Int. J. Food Microbiol. 2010 140 192 200 10.1016/j.ijfoodmicro.2010.03.035 20471709 

  109. 109. Zhang Y. Zhu L. Dong P. Liang R. Mao Y. Qiu S. Luo X. Bio-protective potential of lactic acid bacteria: Effect of Lactobacillus sakei and Lactobacillus curvatus on changes of the microbial community in vacuum-packaged chilled beef Asian Australas. J. Anim. Sci. 2018 31 585 594 10.5713/ajas.17.0540 29059725 

  110. 110. Stella S. Bernardi C. Cattaneo P. Evaluation of the in vitro antimicrobial activity of mixtures of Lactobacillus sakei and L. curvatus isolated from Argentine meat and their application on vacuum-packed beef Ital. J. Food Sci. 2016 28 612 624 

  111. 111. Chen Q. Kong B. Sun Q. Dong F. Liu Q. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model Meat Sci. 2015 110 180 188 10.1016/j.meatsci.2015.07.021 26241464 

  112. 112. Maere H.D. Fraeye I. Mey E.D. Dewulf L. Michiels C. Paelinck H. Chollet S. Formation of naturally occurring pigments during the production of nitrite-free dry fermented sausages Meat Sci. 2016 114 1 7 10.1016/j.meatsci.2015.11.024 26686009 

  113. 113. Herrmann S.S. Duedahl-Olesen L. Christensen T. Olesen P.T. Granby K. Dietary exposure to volatile and non-volatile N-nitrosamines from processed meat products in Denmark Food Chem. Toxicol. 2015 80 137 143 10.1016/j.fct.2015.03.008 25792266 

  114. 114. Hu Y. Xia W. Ge C. Effect of mixed starter cultures fermentation on the characteristics of silver carp sausages World J. Microb. Biot. 2006 23 1021 1031 10.1007/s11274-006-9330-2 

  115. 115. Nie X. Lin S. Zhang Q. Proteolytic characterisation in grass carp sausage inoculated with Lactobacillus plantarum and Pediococcus pentosaceus Food Chem. 2014 145 840 844 10.1016/j.foodchem.2013.08.096 24128554 

  116. 116. Kim S.H. Kang K.H. Kim S.H. Lee S. Lee S.H. Ha E.S. Sung N.J. Kim J.G. Chung M.J. Lactic acid bacteria directly degrade N-nitrosodimethylamine and increase the nitrite-scavenging ability in kimchi Food Control 2017 71 101 109 10.1016/j.foodcont.2016.06.039 

  117. 117. Fadda S. Sanz Y. Vignolo G. Aristoy M.C. Toldra F. Oliver G. Hydrolysis of pork muscle sarcoplasmic proteins by Lactobacillus curvatus and Lactobacillus sake Appl. Environ. Microbiol. 1999 65 578 584 10.1128/AEM.65.2.578-584.1999 9925585 

  118. 118. Joerger R.D. Antimicrobial films for food applications: A quantitative analysis of their effectiveness Packag. Technol. Sci. 2007 20 231 273 10.1002/pts.774 

  119. 119. Massani M.B. Fernandez M.R. Ariosti A. Eisenberg P. Vignolo G. Development and characterization of an active polyethylene film containing Lactobacillus curvatus CRL705 bacteriocins Food Addit. Contam. Part A 2008 25 1424 1430 10.1080/02652030802227219 

  120. 120. Massani M.B. Vignolo G.M. Eisenberg P. Morando P.J. Adsorption of the bacteriocins produced by Lactobacillus curvatus CRL705 on a multilayer-LLDPE film for food-packaging applications LWT Food Sci. Technol. 2013 53 128 138 10.1016/j.lwt.2013.01.018 

  121. 121. Thaiss C.A. Zmora N. Levy M. Elinav E. The microbiome and innate immunity Nature 2016 535 65 74 10.1038/nature18847 27383981 

  122. 122. Backhed F. Ding H. Wang T. The gut microbiota as an environmental factor that regulates fat storage Proc. Natl. Acad. Sci. USA 2004 101 15718 15723 10.1073/pnas.0407076101 15505215 

  123. 123. Jia W. Li H. Zhao L. Gut microbiota: A potential new territory for drug targeting Nat. Rev. Drug Discov. 2008 7 123 129 10.1038/nrd2505 18239669 

  124. 124. Komaroff A.L. The Microbiome and Risk for Obesity and Diabetes JAMA 2017 317 355 356 10.1001/jama.2016.20099 28006047 

  125. 125. Yoo J.Y. Kim S.S. Probiotics and Prebiotics: Present Status and Future Perspectives on Metabolic Disorders Nutrients 2016 8 173 10.3390/nu8030173 26999199 

  126. 126. Backhed F. Manchester J.K. Semenkovich C.F. Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice Proc. Natl. Acad. Sci. USA 2007 104 979 984 10.1073/pnas.0605374104 17210919 

  127. 127. Jeung W.H. Nam W. Kim H.J. Kim J.Y. Nam B. Jang S.S. Lee J.L. Sim J.H. Park S.D. Oral Administration of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 with Cinnamomi Ramulus Extract Reduces Diet-Induced Obesity and Modulates Gut Microbiota Prev. Nutr. Food Sci. 2019 24 136 143 10.3746/pnf.2019.24.2.136 31328117 

  128. 128. Meehan C.J. Beiko R.G. A Phylogenomic View of Ecological Specialization in the Lachnospiraceae, a Family of Digestive Tract-associated Bacteria Genome Biol. Evol. 2014 6 703 713 10.1093/gbe/evu050 24625961 

  129. 129. Dahiya D.K. Renuka Puniya M. Shandilya U.K. Dhewa T. Kumar N. Kumar S. Puniya A.K. Shukla P. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review Front. Microbiol. 2017 8 563 10.3389/fmicb.2017.00563 28421057 

  130. 130. Jeung W.H. Shim J.J. Woo S.W. Sim J.H. Lee J.L. Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 Cell Extracts Inhibit Adipogenesis in 3T3-L1 and HepG2 Cells J. Med. Food 2018 21 876 886 10.1089/jmf.2017.4157 30148699 

  131. 131. Jung S. Lee Y.J. Kim M. Kim M. Kwak J.H. Lee J.-W. Ahn Y.-T. Sim J.-H. Lee J.H. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduced body adiposity and Lp-PLA2 activity in overweight subjects J. Funct. Foods 2015 19 744 752 10.1016/j.jff.2015.10.006 

  132. 132. Hunter P.M. Hegele R.A. Functional foods and dietary supplements for the management of dyslipidaemia Nat. Rev. Endocrinol. 2017 13 278 288 10.1038/nrendo.2016.210 28133369 

  133. 133. Fuentes M.C. Lajo T. Carrion J.M. Cune J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults Br. J. Nutr. 2013 109 1866 1872 10.1017/S000711451200373X 23017585 

  134. 134. Ahn H.Y. Kim M. Chae J.S. Ahn Y.T. Sim J.H. Choi I.D. Lee S.H. Lee J.H. Supplementation with two probiotic strains, Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032, reduces fasting triglycerides and enhances apolipoprotein A-V levels in non-diabetic subjects with hypertriglyceridemia Atherosclerosis 2015 241 649 656 10.1016/j.atherosclerosis.2015.06.030 26117402 

  135. 135. Nilsson S.K. Heeren J. Olivecrona G. Merkel M. Apolipoprotein A-V; a potent triglyceride reducer Atherosclerosis 2011 219 15 21 10.1016/j.atherosclerosis.2011.07.019 21831376 

  136. 136. Choi I.D. Kim S.H. Jeong J.W. Lee D.E. Huh C.S. Hong S.S. Sim J.H. Ahn Y.T. Triglyceride-Lowering Effects of Two Probiotics, Lactobacillus plantarum KY1032 and Lactobacillus curvatus HY7601, in a Rat Model of High-Fat Diet-Induced Hypertriglyceridemia J. Microbiol. Biotechnol. 2016 26 483 487 10.4014/jmb.1512.12018 26699746 

  137. 137. Park M.Y. Kim J. Kim S. Whang K.Y. Lactobacillus curvatus KFP419 and Leuconostoc mesenteroides subsp. mesenteroides KDK411 Isolated from Kimchi Ameliorate Hypercholesterolemia in Rats J. Med. Food 2018 21 647 653 10.1089/jmf.2017.4125 29648969 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로