$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cyclodextrin-based metal-organic frameworks for pulmonary delivery of curcumin with improved solubility and fine aerodynamic performance

International journal of pharmaceutics, v.588, 2020년, pp.119777 -   

Zhou, Yixian (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Zhao, Yiting (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Niu, Boyi (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Luo, Qiaorong (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Zhang, Yue (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Quan, Guilan (College of Pharmacy, Jinan University) ,  Pan, Xin (School of Pharmaceutical Sciences, Sun Yat-sen University) ,  Wu, Chuanbin (School of Pharmaceutical Sciences, Sun Yat-sen University)

Abstract AI-Helper 아이콘AI-Helper

Abstract Pulmonary drug delivery has attracted considerable attention in recent years. However, it is still a major challenge to deliver poorly water-soluble drugs to lungs with good solubility and fine aerodynamic performance. In this study, curcumin was loaded into cyclodextrin-based metal-organi...

주제어

참고문헌 (52)

  1. J. Appl. Phys. Astrakas 111 8 2012 10.1063/1.3699389 Structural destabilization of chignolin under the influence of oscillating electric fields 

  2. J. Chem. Phys. Berendsen 81 3684 1984 10.1063/1.448118 Molecular dynamics with coupling to an external bath 

  3. Pharm. Res. Chow 24 411 2007 10.1007/s11095-006-9174-3 Particle engineering for pulmonary drug delivery 

  4. Int. J. Pharm. Chvatal 559 68 2019 10.1016/j.ijpharm.2019.01.034 Formulation and comparison of spray dried non-porous and large porous particles containing meloxicam for pulmonary drug delivery 

  5. Eur. J. Pharm. Biopharm. Crivelli 137 37 2019 10.1016/j.ejpb.2019.02.008 Silk fibroin nanoparticles for celecoxib and curcumin delivery: ROS-scavenging and anti-inflammatory activities in an in vitro model of osteoarthritis 

  6. Colloid Surf. B-Biointerfaces El-Naggar 177 389 2019 10.1016/j.colsurfb.2019.02.024 Curcumin-loaded PLA-PEG copolymer nanoparticles for treatment of liver inflammation in streptozotocin-induced diabetic rats 

  7. J. Chem. Phys. Essmann 103 8577 1995 10.1063/1.470117 A smooth particle mesh Ewald method 

  8. J. Am. Chem. Soc. Forgan 134 406 2012 10.1021/ja208224f Nanoporous carbohydrate metal-organic frameworks 

  9. Front. Physiol. Fronius 3 146 2012 10.3389/fphys.2012.00146 Why do we have to move fluid to be able to breathe? 

  10. Science Furukawa 341 1230444 2013 10.1126/science.1230444 The chemistry and applications of metal-organic frameworks 

  11. Nanoscale Gou 3 1558 2011 10.1039/c0nr00758g Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo 

  12. Acta Pharm. Sin. B He 9 97 2019 10.1016/j.apsb.2018.09.003 Drug nanoclusters formed in confined nano-cages of CD-MOF: dramatic enhancement of solubility and bioavailability of azilsartan 

  13. J. Comput. Chem. Hess 18 1463 1997 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H LINCS: a linear constraint solver for molecular simulations 

  14. J. Chem. Theory Comput. Hess 4 435 2008 10.1021/ct700301q GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation 

  15. Int. J. Pharm. Homayouni 562 124 2019 10.1016/j.ijpharm.2019.03.038 Curcumin nanoparticles containing poloxamer or soluplus tailored by high pressure homogenization using antisolvent crystallization 

  16. Nanoscale Res. Lett. Hu 10 381 2015 10.1186/s11671-015-1085-y Evaluation of high-performance curcumin nanocrystals for pulmonary drug delivery both in vitro and in vivo 

  17. Int. J. Pharm. Hu 551 212 2018 10.1016/j.ijpharm.2018.09.031 Inhalation treatment of idiopathic pulmonary fibrosis with curcumin large porous microparticles 

  18. Food Res. Int. Huang 87 1 2016 10.1016/j.foodres.2016.06.009 Enhancement of curcumin water dispersibility and antioxidant activity using core-shell protein-polysaccharide nanoparticles 

  19. Int. J. Pharm. Huang 551 103 2018 10.1016/j.ijpharm.2018.09.018 Dry powder inhaler formulations of poorly water-soluble itraconazole: A balance between in-vitro dissolution and in-vivo distribution is necessary 

  20. J. Pharm. Sci. Jong 105 1156 2016 10.1016/S0022-3549(15)00189-6 Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization 

  21. Int. J. Pharm. Kadota 555 280 2019 10.1016/j.ijpharm.2018.11.055 Development of porous particles using dextran as an excipient for enhanced deep lung delivery of rifampicin 

  22. Pharm. Res. Khan 37 116 2020 10.1007/s11095-020-02840-w A facile and novel approach to manufacture paclitaxel-loaded proliposome tablet formulations of micro or nano vesicles for nebulization 

  23. J. Control. Release Kinnarinen 90 197 2003 10.1016/S0168-3659(03)00176-7 Pulmonary deposition of a budesonide/gamma-cyclodextrin complex in vitro 

  24. J. Control. Release Kirch 159 128 2012 10.1016/j.jconrel.2011.12.015 Mucociliary clearance of micro- and nanoparticles is independent of size, shape and charge-an ex vivo and in silico approach 

  25. Int. J. Pharm. Liang 552 67 2018 10.1016/j.ijpharm.2018.09.045 Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation 

  26. Int. J. Pharm. Lin 533 84 2017 10.1016/j.ijpharm.2017.09.024 Development of fine solid-crystal suspension with enhanced solubility, stability, and aerosolization performance for dry powder inhalation 

  27. Food Hydrocolloid. Liu 93 432 2019 10.1016/j.foodhyd.2019.02.003 Encapsulation of curcumin in zein/ caseinate/sodium alginate nanoparticles with improved physicochemical and controlled release properties 

  28. Carbohydr. Polym. Liu 181 1143 2018 10.1016/j.carbpol.2017.11.018 Budesonide nanocrystal-loaded hyaluronic acid microparticles for inhalation: in vitro and in vivo evaluation 

  29. Expert Opin. Drug Deliv. Loftsson 2 335 2005 10.1517/17425247.2.1.335 Cyclodextrins in drug delivery 

  30. Part. Fibre Toxicol. Loret 15 25 2018 10.1186/s12989-018-0260-6 Predicting the in vivo pulmonary toxicity induced by acute exposure to poorly soluble nanomaterials by using advanced in vitro methods 

  31. Expert Rev. Vaccines Lu 6 213 2007 10.1586/14760584.6.2.213 Pulmonary vaccine delivery 

  32. Eur. J. Pharm. Biopharm. Mohtar 113 1 2017 10.1016/j.ejpb.2016.11.036 Design and development of dry powder sulfobutylether-beta-cyclodextrin complex for pulmonary delivery of fisetin 

  33. Eur. J. Pharm. Sci. Ni 99 137 2017 10.1016/j.ejps.2016.12.013 Nanocrystals embedded in chitosan-based respirable swellable microparticles as dry powder for sustained pulmonary drug delivery 

  34. Proc. Am. Thorac. Soc. Patton 1 338 2004 10.1513/pats.200409-049TA The lungs as a portal of entry for systemic drug delivery 

  35. Eur. J. Pharm. Biopharm. Pellosi 130 30 2018 10.1016/j.ejpb.2018.06.006 In vitro/in vivo investigation on the potential of Pluronic mixed micelles for pulmonary drug delivery 

  36. J. Mat. Chem. B Secret 3 5629 2015 10.1039/C5TB00443H Matrix metalloproteinase-sensitive hydrogel microparticles for pulmonary drug delivery of small molecule drugs or proteins 

  37. Chem. Commun. Singh 53 9246 2017 10.1039/C7CC03471G Moisture resistant and biofriendly CD-MOF nanoparticles obtained via cholesterol shielding 

  38. Angew. Chem.-Int. Edit. Smaldone 49 8630 2010 10.1002/anie.201002343 Metal-organic frameworks from edible natural products 

  39. Mater. Sci. Eng. C-Mater. Biol. Appl. Song 99 255 2019 10.1016/j.msec.2018.12.053 Synergistic antibacterial effects of curcumin modified silver nanoparticles through ROS-mediated pathways 

  40. Eur. J. Pharm. Sci. Su 134 246 2019 10.1016/j.ejps.2019.04.025 Treatment of metastatic lung cancer via inhalation administration of curcumin composite particles based on mesoporous silica 

  41. Eur. J. Pharm. Biopharm. Terzano 59 57 2005 10.1016/j.ejpb.2004.06.010 Non-phospholipid vesicles for pulmonary glucocorticold delivery 

  42. Chem. Rev. Van Vleet 118 3681 2018 10.1021/acs.chemrev.7b00582 In situ, time-resolved, and mechanistic studies of metal-organic framework nucleation and growth 

  43. Eur. J. Pharm. Sci. Velaga 113 18 2018 10.1016/j.ejps.2017.09.002 Dry powder inhalers: an overview of the in vitro dissolution methodologies and their correlation with the biopharmaceutical aspects of the drug products 

  44. Chem. Soc. Rev. Wang 47 4729 2018 10.1039/C7CS00885F Sensing and capture of toxic and hazardous gases and vapors by metal-organic frameworks 

  45. Int. J. Pharm. Wang 525 264 2017 10.1016/j.ijpharm.2017.04.052 Development and physicochemical characterization of acetalated dextran aerosol particle systems for deep lung delivery 

  46. Food Chem. Wu 288 139 2019 10.1016/j.foodchem.2019.03.010 Enhanced functional properties of biopolymer film incorporated with curcurmin-loaded mesoporous silica nanoparticles for food packaging 

  47. Food Chem. Wu 291 180 2019 10.1016/j.foodchem.2019.04.029 Quaternized curdlan/pectin polyelectrolyte complexes as biocompatible nanovehicles for curcumin 

  48. Pharm. Res. Wyszogrodzka 35 144 2018 10.1007/s11095-018-2425-2 Iron-based metal-organic frameworks as a theranostic carrier for local tuberculosis therapy 

  49. Int. J. Pharm. Xu 556 89 2019 10.1016/j.ijpharm.2018.11.074 A “Ship-in-a-Bottle” strategy to create folic acid nanoclusters inside the nanocages of gamma-cyclodextrin metal-organic frameworks 

  50. ACS Appl. Mater. Interf. Zhan 10 35234 2018 10.1021/acsami.8b12380 Fabrication of integrated Cu2O@HKUST-1@Au nanocatalysts via galvanic replacements toward alcohols oxidation application 

  51. Acta Pharm. Sin. B Zhang 8 440 2018 10.1016/j.apsb.2018.03.004 Inhalation treatment of primary lung cancer using liposomal curcumin dry powder inhalers 

  52. 10.1016/j.apsb.2020.07.018 Zhou, Y.X., Niu, B.Y., Wu, B.Y., Luo, S.L., Fu, J.T., Zhao, Y.T., Quan, G.L., Pan, X., Wu, C.B., 2020. A homogenous nanoporous pulmonary drug delivery system based on metal-organic frameworks with fine aerosolization performance and good compatibility. Acta Pharm. Sin. B, https://doi.org/10.1016/j.apsb.2020.07.018. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로