$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Spatial organization of functional clusters representing reward and movement information in the striatal direct and indirect pathways 원문보기

Proceedings of the National Academy of Sciences of the United States of America, v.117 no.43, 2020년, pp.27004 - 27015  

Shin, Jung Hwan (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea) ,  Song, Min ,  Paik, Se-Bum (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea) ,  Jung, Min Whan

Abstract AI-Helper 아이콘AI-Helper

SignificanceThe striatum is critically involved in voluntary motor control and reward-based learning. To formulate a nuanced model of the striatum, it would be important to understand how functional ensembles of striatal neurons are organized in the spatiotemporal domain. In this perspective, we mon...

Keyword

참고문헌 (43)

  1. Balleine, Bernard W., Delgado, Mauricio R., Hikosaka, Okihide. The Role of the Dorsal Striatum in Reward and Decision-Making: Figure 1.. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.27, no.31, 8161-8165.

  2. Kravitz, Alexxai V., Kreitzer, Anatol C.. Striatal Mechanisms Underlying Movement, Reinforcement, and Punishment. Physiology, vol.27, no.3, 167-177.

  3. Ito, M., Doya, K.. Multiple representations and algorithms for reinforcement learning in the cortico-basal ganglia circuit. Current opinion in neurobiology, vol.21, no.3, 368-373.

  4. DeLong, M.R.. Primate models of movement disorders of basal ganglia origin. Trends in neurosciences, vol.13, no.7, 281-285.

  5. Alexander, G.E., Crutcher, M.D.. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in neurosciences, vol.13, no.7, 266-271.

  6. Redgrave, Peter, Rodriguez, Manuel, Smith, Yoland, Rodriguez-Oroz, Maria C., Lehericy, Stephane, Bergman, Hagai, Agid, Yves, DeLong, Mahlon R., Obeso, Jose A.. Goal-directed and habitual control in the basal ganglia: implications for Parkinson's disease. Nature reviews. Neuroscience, vol.11, no.11, 760-772.

  7. Lobo, Mary Kay, Covington III, Herbert E., Chaudhury, Dipesh, Friedman, Allyson K., Sun, HaoSheng, Damez-Werno, Diane, Dietz, David M., Zaman, Samir, Koo, Ja Wook, Kennedy, Pamela J., Mouzon, Ezekiell, Mogri, Murtaza, Neve, Rachael L., Deisseroth, Karl, Han, Ming-Hu, Nestler, Eric J.. Cell Type-Specific Loss of BDNF Signaling Mimics Optogenetic Control of Cocaine Reward. Science, vol.330, no.6002, 385-390.

  8. Ferguson, SM, Eskenazi, D, Ishikawa, M, Wanat, MJ, Phillips, PEM, Dong, Y, Roth, BL, Neumaier, JF. Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nature neuroscience, vol.14, no.1, 22-24.

  9. Kravitz, Alexxai V, Tye, Lynne D, Kreitzer, Anatol C. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nature neuroscience, vol.15, no.6, 816-818.

  10. Sheng, Meng-jun, Lu, Di, Shen, Zhi-ming, Poo, Mu-ming. Emergence of stable striatal D1R and D2R neuronal ensembles with distinct firing sequence during motor learning. Proceedings of the National Academy of Sciences of the United States of America, vol.116, no.22, 11038-11047.

  11. Tecuapetla, F., Jin, X., Lima, S.Q., Costa, R.M.. Complementary Contributions of Striatal Projection Pathways to Action Initiation and Execution. Cell, vol.166, no.3, 703-715.

  12. Cui, Guohong, Jun, Sang Beom, Jin, Xin, Pham, Michael D., Vogel, Steven S., Lovinger, David M., Costa, Rui M.. Concurrent Activation of Striatal Direct and Indirect Pathways During Action Initiation. Nature, vol.494, no.7436, 238-242.

  13. Hikosaka, Okihide, Takikawa, Yoriko, Kawagoe, Reiko. Role of the Basal Ganglia in the Control of Purposive Saccadic Eye Movements. Physiological reviews, vol.80, no.3, 953-978.

  14. Nambu, Atsushi. Seven problems on the basal ganglia. Current opinion in neurobiology, vol.18, no.6, 595-604.

  15. Tecuapetla, Fatuel, Matias, Sara, Dugue, Guillaume P., Mainen, Zachary F., Costa, Rui M.. Balanced activity in basal ganglia projection pathways is critical for contraversive movements. Nature communications, vol.5, 4315-.

  16. Parker, Jones G., Marshall, Jesse D., Ahanonu, Biafra, Wu, Yu-Wei, Kim, Tony Hyun, Grewe, Benjamin F., Zhang, Yanping, Li, Jin Zhong, Ding, Jun B., Ehlers, Michael D., Schnitzer, Mark J.. Diametric neural ensemble dynamics in parkinsonian and dyskinetic states. Nature, vol.557, no.7704, 177-182.

  17. Burke, Dennis A., Rotstein, Horacio G., Alvarez, Veronica A.. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron, vol.96, no.2, 267-284.

  18. Adler, Avital, Katabi, Shiran, Finkes, Inna, Israel, Zvi, Prut, Yifat, Bergman, Hagai. Temporal Convergence of Dynamic Cell Assemblies in the Striato-Pallidal Network. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.32, no.7, 2473-2484.

  19. Jin, Xin, Tecuapetla, Fatuel, Costa, Rui M. Basal Ganglia Subcircuits Distinctively Encode the Parsing and Concatenation of Action Sequences. Nature neuroscience, vol.17, no.3, 423-430.

  20. Barbera, G., Liang, B., Zhang, L., Gerfen, Charles R., Culurciello, E., Chen, R., Li, Y., Lin, D.T.. Spatially Compact Neural Clusters in the Dorsal Striatum Encode Locomotion Relevant Information. Neuron, vol.92, no.1, 202-213.

  21. Klaus, Andreas, Martins, Gabriela J., Paixao, Vitor B., Zhou, Pengcheng, Paninski, Liam, Costa, Rui M.. The Spatiotemporal Organization of the Striatum Encodes Action Space. Neuron, vol.96, no.4, 949-949.

  22. Owen, Scott F., Berke, Joshua D., Kreitzer, Anatol C.. Fast-Spiking Interneurons Supply Feedforward Control of Bursting, Calcium, and Plasticity for Efficient Learning. Cell, vol.172, no.4, 683-695.e15.

  23. Gerfen, CR, Engber, TM, Mahan, LC, Susel, Z, Chase, TN, Monsma, FJ, Sibley, DR. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science, vol.250, no.4986, 1429-1432.

  24. Schiffmann, Serge N., Jacobs, Olivier, Vanderhaeghen, Jean‐Jacques. Striatal Restricted Adenosine A2 Receptor (RDC8) Is Expressed by Enkephalin but Not by Substance P Neurons: An In Situ Hybridization Histochemistry Study. Journal of neurochemistry, vol.57, no.3, 1062-1067.

  25. Zhou, Pengcheng, Resendez, Shanna L, Rodriguez-Romaguera, Jose, Jimenez, Jessica C, Neufeld, Shay Q, Giovannucci, Andrea, Friedrich, Johannes, Pnevmatikakis, Eftychios A, Stuber, Garret D, Hen, Rene, Kheirbek, Mazen A, Sabatini, Bernardo L, Kass, Robert E, Paninski, Liam. Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data. eLife, vol.7, e28728-.

  26. Shin, Jung Hwan, Kim, Dohoung, Jung, Min Whan. Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nature communications, vol.9, no.1, 404-.

  27. Lee, Daeyeol, Seo, Hyojung, Jung, Min Whan. Neural Basis of Reinforcement Learning and Decision Making. Annual review of neuroscience, vol.35, 287-308.

  28. Curtis, C.E., Lee, D.. Beyond working memory: the role of persistent activity in decision making. Trends in cognitive sciences, vol.14, no.5, 216-222.

  29. Paik, Se-Bum, Ringach, Dario L. Retinal origin of orientation maps in visual cortex. Nature neuroscience, vol.14, no.7, 919-925.

  30. Fusi, S., Miller, E.K., Rigotti, M.. Why neurons mix: high dimensionality for higher cognition. Current opinion in neurobiology, vol.37, 66-74.

  31. Yoshizawa, Tomohiko, Ito, Makoto, Doya, Kenji. Reward-Predictive Neural Activities in Striatal Striosome Compartments. eNeuro, vol.5, no.1, ENEURO.0367-17.2018-.

  32. Bloem, Bernard, Huda, Rafiq, Sur, Mriganka, Graybiel, Ann M. Two-photon imaging in mice shows striosomes and matrix have overlapping but differential reinforcement-related responses. eLife, vol.6, e32353-.

  33. Kwak, Shinae, Jung, Min Whan. Distinct roles of striatal direct and indirect pathways in value-based decision making. eLife, vol.8, e46050-.

  34. Kravitz, Alexxai V., Freeze, Benjamin S., Parker, Philip R. L., Kay, Kenneth, Thwin, Myo T., Deisseroth, Karl, Kreitzer, Anatol C.. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, vol.466, no.7306, 622-626.

  35. Barnes, Terra D., Kubota, Yasuo, Hu, Dan, Jin, Dezhe Z., Graybiel, Ann M.. Activity of striatal neurons reflects dynamic encoding and recoding of procedural memories. Nature, vol.437, no.7062, 1158-1161.

  36. Bakhurin, Konstantin I., Mac, Victor, Golshani, Peyman, Masmanidis, Sotiris C.. Temporal correlations among functionally specialized striatal neural ensembles in reward-conditioned mice. Journal of neurophysiology, vol.115, no.3, 1521-1532.

  37. Bornstein, A.M., Daw, N.D.. Multiplicity of control in the basal ganglia: computational roles of striatal subregions. Current opinion in neurobiology, vol.21, no.3, 374-380.

  38. Frank, M.J.. Computational models of motivated action selection in corticostriatal circuits. Current opinion in neurobiology, vol.21, no.3, 381-386.

  39. Albin, R.L., Young, A.B., Penney, J.B.. The functional anatomy of basal ganglia disorders. Trends in neurosciences, vol.12, no.10, 366-375.

  40. Nonomura, Satoshi, Nishizawa, Kayo, Sakai, Yutaka, Kawaguchi, Yasuo, Kato, Shigeki, Uchigashima, Motokazu, Watanabe, Masahiko, Yamanaka, Ko, Enomoto, Kazuki, Chiken, Satomi, Sano, Hiromi, Soma, Shogo, Yoshida, Junichi, Samejima, Kazuyuki, Ogawa, Masaaki, Kobayashi, Kazuto, Nambu, Atsushi, Isomura, Yoshikazu, Kimura, Minoru. Monitoring and Updating of Action Selection for Goal-Directed Behavior through the Striatal Direct and Indirect Pathways. Neuron, vol.99, no.6, 1302-1314.e5.

  41. Lee, H.J., Weitz, A.J., Bernal-Casas, D., Duffy, B.A., Choy, M., Kravitz, A.V., Kreitzer, A.C., Lee, J.H.. Activation of Direct and Indirect Pathway Medium Spiny Neurons Drives Distinct Brain-wide Responses. Neuron, vol.91, no.2, 412-424.

  42. Regression Diagnostics: Identifying Influential Data and Sources of Collinearity Belsley D. A. 2005 D. A. Belsley, E. Kuh, R. E. Welsch, Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, (John Wiley & Sons, 2005). 

  43. Mathis, Alexander, Mamidanna, Pranav, Cury, Kevin M., Abe, Taiga, Murthy, Venkatesh N., Mathis, Mackenzie Weygandt, Bethge, Matthias. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature neuroscience, vol.21, no.9, 1281-1289.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로