$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Solid Electrolyte Interphase Revealing Interfacial Electrochemistry on Highly Oriented Pyrolytic Graphite in a Water-in-Salt Electrolyte

The journal of physical chemistry. C, Nanomaterials and Interfaces, v.124 no.37, 2020년, pp.20135 - 20142  

Kim, Yena (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Hong, Misun (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Oh, Hyunjeong (Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , 291 Daehak-ro , Yuseong-gu, Daejeon 34141 , Republic of Korea) ,  Kim, Yousoo (Surface and Interface Science Laboratory, RIKEN , 2-1 Hirosawa , Wako , Saitama 351-0198 , Japan) ,  Suyama, Hiroshi (Advanced Material Engineering Division, Higashifuji Technical Center , Toyota Motor Corporation , 1200, Mishuku , Susono , Shizuoka 410-1193 , Japan) ,  Nakanishi, Shinji (Advanced Material Engineering Division, Higashifuji Technical Center , Toyota Motor Corporation , 1200, Mishuku , Susono , Shizuoka) ,  Byon, Hye Ryung

Abstract AI-Helper 아이콘AI-Helper

We present a fundamental study of solid-electrolyte interphase (SEI) layers toward a better understanding of interfacial electrochemistry. In particular, water-in-salt electrolytes yield SEIs with a simple composition that describes the electrolyte-electrode interface explicitly. The 21 m lithium bi...

참고문헌 (49)

  1. Xu, Kang. Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries. Chemical reviews, vol.104, no.10, 4303-4418.

  2. Xu, Kang. Electrolytes and Interphases in Li-Ion Batteries and Beyond. Chemical reviews, vol.114, no.23, 11503-11618.

  3. Yang, Chongyin, Chen, Ji, Qing, Tingting, Fan, Xiulin, Sun, Wei, von Cresce, Arthur, Ding, Michael S., Borodin, Oleg, Vatamanu, Jenel, Schroeder, Marshall A., Eidson, Nico, Wang, Chunsheng, Xu, Kang. 4.0 V Aqueous Li-Ion Batteries. Joule, vol.1, no.1, 122-132.

  4. McEldrew, Michael, Goodwin, Zachary A. H., Kornyshev, Alexei A., Bazant, Martin Z.. Theory of the Double Layer in Water-in-Salt Electrolytes. The journal of physical chemistry letters, vol.9, no.19, 5840-5846.

  5. Vatamanu, Jenel, Borodin, Oleg. Ramifications of Water-in-Salt Interfacial Structure at Charged Electrodes for Electrolyte Electrochemical Stability. The journal of physical chemistry letters, vol.8, no.18, 4362-4367.

  6. Jubb, Aaron M., Hua, Wei, Allen, Heather C.. Organization of Water and Atmospherically Relevant Ions and Solutes: Vibrational Sum Frequency Spectroscopy at the Vapor/Liquid and Liquid/Solid Interfaces. Accounts of chemical research, vol.45, no.1, 110-119.

  7. Nihonyanagi, Satoshi, Yamaguchi, Shoichi, Tahara, Tahei. Ultrafast Dynamics at Water Interfaces Studied by Vibrational Sum Frequency Generation Spectroscopy. Chemical reviews, vol.117, no.16, 10665-10693.

  8. Suo, Liumin, Oh, Dahyun, Lin, Yuxiao, Zhuo, Zengqing, Borodin, Oleg, Gao, Tao, Wang, Fei, Kushima, Akihiro, Wang, Ziqiang, Kim, Ho-Cheol, Qi, Yue, Yang, Wanli, Pan, Feng, Li, Ju, Xu, Kang, Wang, Chunsheng. How Solid-Electrolyte Interphase Forms in Aqueous Electrolytes. Journal of the American Chemical Society, vol.139, no.51, 18670-18680.

  9. Yan, Chong, Li, Hao-Ran, Chen, Xiang, Zhang, Xue-Qiang, Cheng, Xin-Bing, Xu, Rui, Huang, Jia-Qi, Zhang, Qiang. Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes. Journal of the American Chemical Society, vol.141, no.23, 9422-9429.

  10. Bouchal, Roza, Li, Zhujie, Bongu, Chandra, Le Vot, Steven, Berthelot, Romain, Rotenberg, Benjamin, Favier, Frederic, Freunberger, Stefan A., Salanne, Mathieu, Fontaine, Olivier. Competitive Salt Precipitation/Dissolution During Free‐Water Reduction in Water‐in‐Salt Electrolyte. Angewandte Chemie. international edition, vol.59, no.37, 15913-15917.

  11. Leonard, Daniel P., Wei, Zhixuan, Chen, Gang, Du, Fei, Ji, Xiulei. Water-in-Salt Electrolyte for Potassium-Ion Batteries. ACS energy letters, vol.3, no.2, 373-374.

  12. Lukatskaya, Maria R., Feldblyum, Jeremy I., Mackanic, David G., Lissel, Franziska, Michels, Dominik L., Cui, Yi, Bao, Zhenan. Concentrated mixed cation acetate “water-in-salt” solutions as green and low-cost high voltage electrolytes for aqueous batteries. Energy & environmental science, vol.11, no.10, 2876-2883.

  13. Rempe, S. B., Pratt, L. R., Hummer, G., Kress, J. D., Martin, R. L., Redondo, A.. The Hydration Number of Li+ in Liquid Water. Journal of the American Chemical Society, vol.122, no.5, 966-967.

  14. Suo, Liumin, Borodin, Oleg, Gao, Tao, Olguin, Marco, Ho, Janet, Fan, Xiulin, Luo, Chao, Wang, Chunsheng, Xu, Kang. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science, vol.350, no.6263, 938-943.

  15. Dubouis, Nicolas, Lemaire, Pierre, Mirvaux, Boris, Salager, Elodie, Deschamps, Michael, Grimaud, Alexis. The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for “Water-in-Salt” electrolytes. Energy & environmental science, vol.11, no.12, 3491-3499.

  16. Yamada, Yuki, Usui, Kenji, Sodeyama, Keitaro, Ko, Seongjae, Tateyama, Yoshitaka, Yamada, Atsuo. Hydrate-melt electrolytes for high-energy-density aqueous batteries. Nature energy, vol.1, 16129-.

  17. Sommerhalter, Ch., Matthes, Th. W., Glatzel, Th., Jäger-Waldau, A., Lux-Steiner, M. Ch.. High-sensitivity quantitative Kelvin probe microscopy by noncontact ultra-high-vacuum atomic force microscopy. Applied physics letters, vol.75, no.2, 286-288.

  18. Lee, Hyunsoo, Lee, Han-Bo-Ram, Kwon, Sangku, Salmeron, Miquel, Park, Jeong Young. Internal and External Atomic Steps in Graphite Exhibit Dramatically Different Physical and Chemical Properties. ACS nano, vol.9, no.4, 3814-3819.

  19. Zhang, Guohui, Kirkman, Paul M., Patel, Anisha N., Cuharuc, Anatolii S., McKelvey, Kim, Unwin, Patrick R.. Molecular Functionalization of Graphite Surfaces: Basal Plane versus Step Edge Electrochemical Activity. Journal of the American Chemical Society, vol.136, no.32, 11444-11451.

  20. Davies, Trevor J., Hyde, Michael E., Compton, Richard G.. Nanotrench Arrays Reveal Insight into Graphite Electrochemistry. Angewandte Chemie. international edition, vol.44, no.32, 5121-5126.

  21. McCreery, Richard L.. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chemical reviews, vol.108, no.7, 2646-2687.

  22. Li, Zhiting, Wang, Yongjin, Kozbial, Andrew, Shenoy, Ganesh, Zhou, Feng, McGinley, Rebecca, Ireland, Patrick, Morganstein, Brittni, Kunkel, Alyssa, Surwade, Sumedh P., Li, Lei, Liu, Haitao. Effect of airborne contaminants on the wettability of supported graphene and graphite. Nature materials, vol.12, no.10, 925-931.

  23. Kozbial, Andrew, Trouba, Charlie, Liu, Haitao, Li, Lei. Characterization of the Intrinsic Water Wettability of Graphite Using Contact Angle Measurements: Effect of Defects on Static and Dynamic Contact Angles. Langmuir : the ACS journal of surfaces and colloids, vol.33, no.4, 959-967.

  24. Ashraf, Ali, Wu, Yanbin, Wang, Michael C., Aluru, Narayana R., Dastgheib, Seyed A., Nam, SungWoo. Spectroscopic Investigation of the Wettability of Multilayer Graphene Using Highly Ordered Pyrolytic Graphite as a Model Material. Langmuir : the ACS journal of surfaces and colloids, vol.30, no.43, 12827-12836.

  25. Bhattacharjee, Sanchari, Khan, Sandip. The wetting behavior of aqueous imidazolium based ionic liquids: a molecular dynamics study. Physical chemistry chemical physics : PCCP, vol.22, no.16, 8595-8605.

  26. Zhang, L., Zhang, Y., Zhang, X., Li, Z., Shen, G., Ye, M., Fan, C., Fang, H., Hu, J.. Electrochemically Controlled Formation and Growth of Hydrogen Nanobubbles. Langmuir : the ACS journal of surfaces and colloids, vol.22, no.19, 8109-8113.

  27. Yang, Shangjiong, Tsai, Peichun, Kooij, E. Stefan, Prosperetti, Andrea, Zandvliet, Harold J. W., Lohse, Detlef. Electrolytically Generated Nanobubbles on Highly Orientated Pyrolytic Graphite Surfaces. Langmuir : the ACS journal of surfaces and colloids, vol.25, no.3, 1466-1474.

  28. Hui, Fei, Li, Bin, He, Pingang, Hu, Jun, Fang, Yuzhi. Electrochemical fabrication of nanoporous polypyrrole film on HOPG using nanobubbles as templates. Electrochemistry communications, vol.11, no.3, 639-642.

  29. Schulz, Natalia, Hausbrand, René, Wittich, Carolin, Dimesso, Lucangelo, Jaegermann, Wolfram. XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part II. SEI-Composition and Formation inside Composite Electrodes. Journal of the Electrochemical Society : JES, vol.165, no.5, A833-A846.

  30. Schulz, Natalia, Hausbrand, René, Wittich, Carolin, Dimesso, Lucangelo, Jaegermann, Wolfram. XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part II. SEI-Composition and Formation inside Composite Electrodes. Journal of the Electrochemical Society : JES, vol.165, no.5, A833-A846.

  31. Eshetu, Gebrekidan Gebresilassie, Diemant, Thomas, Grugeon, Sylvie, Behm, R. Jürgen, Laruelle, Stephane, Armand, Michel, Passerini, Stefano. In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium–Imide- and Lithium–Imidazole-Based Electrolytes. ACS applied materials & interfaces, vol.8, no.25, 16087-16100.

  32. Philippe, Bertrand, Dedryvère, Rémi, Gorgoi, Mihaela, Rensmo, Håkan, Gonbeau, Danielle, Edström, Kristina. Improved Performances of Nanosilicon Electrodes Using the Salt LiFSI: A Photoelectron Spectroscopy Study. Journal of the American Chemical Society, vol.135, no.26, 9829-9842.

  33. García-Miranda Ferrari, Alejandro, Brownson, Dale A. C., Banks, Craig E.. Investigating the Integrity of Graphene towards the Electrochemical Hydrogen Evolution Reaction (HER). Scientific reports, vol.9, no.1, 15961-.

  34. Zhao, Xu, Ren, Hang, Luo, Long. Gas Bubbles in Electrochemical Gas Evolution Reactions. Langmuir : the ACS journal of surfaces and colloids, vol.35, no.16, 5392-5408.

  35. Palchan, I., Crespin, M., Estrade-Szwarckopf, H., Rousseau, B.. Graphite fluorides: An XPS study of a new type of CF bonding. Chemical physics letters, vol.157, no.4, 321-327.

  36. Feng, Wei, Long, Peng, Feng, Yiyu, Li, Yu. Two‐Dimensional Fluorinated Graphene: Synthesis, Structures, Properties and Applications. Advanced science, vol.3, no.7, 1500413-.

  37. Sun, Chuanbin, Feng, Yiyu, Li, Yu, Qin, Chengqun, Zhang, Qingqing, Feng, Wei. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale, vol.6, no.5, 2634-2641.

  38. Zhou, Guangmin, Paek, Eunsu, Hwang, Gyeong S., Manthiram, Arumugam. Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nature communications, vol.6, 7760-.

  39. Vusa, Chiranjeevi Srinivasa Rao, Venkatesan, Manju, K, Aneesh, Berchmans, Sheela, Arumugam, Palaniappan. Tactical tuning of the surface and interfacial properties of graphene: A Versatile and rational electrochemical approach. Scientific reports, vol.7, 8354-.

  40. Lechner, Christoph, Baranek, Philippe, Vach, Holger. Adsorption of atomic hydrogen on defect sites of graphite: Influence of surface reconstruction and irradiation damage. Carbon, vol.127, 437-448.

  41. Guo, Z., Dong, X., Yuan, S., Wang, Y., Xia, Y.. Humidity effect on electrochemical performance of Li-O2 batteries. Journal of power sources, vol.264, 1-7.

  42. Zhang, Haitao, Wang, Deyu, Shen, Cai. In-situ EC-AFM and ex-situ XPS characterization to investigate the mechanism of SEI formation in highly concentrated aqueous electrolyte for Li-ion batteries. Applied surface science, vol.507, 145059-.

  43. Wood, Kevin N., Teeter, Glenn. XPS on Li-Battery-Related Compounds: Analysis of Inorganic SEI Phases and a Methodology for Charge Correction. ACS applied energy materials, vol.1, no.9, 4493-4504.

  44. Han, Sang Yun, Boebinger, Matthew G., Kondekar, Neha P., Worthy, Trevor J., McDowell, Matthew T.. Seeded Nanowire and Microwire Growth from Lithium Alloys. Nano letters : a journal dedicated to nanoscience and nanotechnology, vol.18, no.7, 4331-4337.

  45. Steiger, J., Kramer, D., Monig, R.. Mechanisms of dendritic growth investigated by in situ light microscopy during electrodeposition and dissolution of lithium. Journal of power sources, vol.261, 112-119.

  46. YangThe first two authors contributed equally in this paper., Tao, Liu, Jianmei, Dai, Jinhui, Han, Yongsheng. Shaping particles by chemical diffusion and reaction. CrystEngComm, vol.19, no.1, 72-79.

  47. Oaki, Yuya, Imai, Hiroaki. Experimental Demonstration for the Morphological Evolution of Crystals Grown in Gel Media. Crystal growth & design, vol.3, no.5, 711-716.

  48. Andersson, A.M, Henningson, A, Siegbahn, H, Jansson, U, Edström, K. Electrochemically lithiated graphite characterised by photoelectron spectroscopy. Journal of power sources, vol.119, 522-527.

  49. Coustan, Laura, Zaghib, Karim, Bélanger, Daniel. New insight in the electrochemical behaviour of stainless steel electrode in water-in-salt electrolyte. Journal of power sources, vol.399, 299-303.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로