$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electromagnetic-launch-based method for cost-efficient space debris removal

Open astronomy, v.29 no.1, 2020년, pp.94 - 106  

Hou, Chongyuan (School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China) ,  Yang, Yuan (School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China) ,  Yang, Yikang (School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China) ,  Yang, Kaizhong (National Key Laboratory of Science and Technology on Vessel Integrated Power System, Naval University of Engineering, Wuhan, China) ,  Zhang, Xiao (School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an, China) ,  Lu, Junyong

Abstract

AbstractThe increase in space debris orbiting Earth is a critical problem for future space missions. Space debris removal has thus become an area of interest, and significant research progress is being made in this field. However, the exorbitant cost of space debris removal missions is a major concern for commercial space companies. We therefore propose the debris removal using electromagnetic launcher (DREL) system, a ground-based electromagnetic launch system (railgun), for space debris removal missions. The DREL system has three components: a ground-based electromagnetic launcher (GEML), suborbital vehicle (SOV), and mass of micrometer-scale dust (MSD) particles. The average cost of removing a piece of low-earth orbit space debris using DREL was found to be approximately USD 160,000. The DREL method is thus shown to be economical; the total cost to remove more than 2,000 pieces of debris in a cluster was only approximately USD 400 million, compared to the millions of dollars required to remove just one or two pieces of debris using a conventional space debris removal mission. By using DREL, the cost of entering space is negligible, thereby enabling countries to remove their space debris in an affordable manner.

주제어

참고문헌 (30)

  1. 10.1016/j.actaastro.2019.09.001 Aglietti GS, Taylor B, Fellowes S, Salmon T, Retat I, Hall A, Chabot T, et al. 2020. The active space debris removal mission RemoveDebris. Part 2: in orbit operations. Acta Astronaut. 168:310-322. 

  2. 10.1016/j.actaastro.2018.06.056 Alpatov A, Khoroshylov S, Bombardelli C. 2018. Relative control of an ion beam shepherd satellite using the impulse compensation thruster. Acta Astronaut. 151:543-554.10.1016/j.actaastro.2018.06.056 

  3. 10.1016/j.asr.2018.07.021 Bennett T, Schaub H. 2018. Contactless electrostatic detumbling of axi-symmetric GEO objects with nominal pushing or pulling. Adv Space Res. 62(11):2977-2987.10.1016/j.asr.2018.07.021 

  4. 10.1016/j.actaastro.2018.07.009 Calabro M, Perrot L. 2019. XXI century tower: laser orbital debris removal and collision avoidance. Acta Astronaut. 158:220-230.10.1016/j.actaastro.2018.07.009 

  5. 10.1016/j.actaastro.2019.03.002 Choi J, Jung J, Lee D, Kim B. 2019. Articulated linkage arms based reliable capture device for janitor satellites. Acta Astronaut. 163:91-99.10.1016/j.actaastro.2019.03.002 

  6. 10.1016/j.actaastro.2019.09.010 Fang Y, Pan J, Luo Y, Li C. 2019. Effects of deorbit evolution on space-based pulse laser irradiating centimeter-scale space debris in LEO. Acta Astronaut. 165:184-190.10.1016/j.actaastro.2019.09.010 

  7. FENGYUN 1C. http://celestrak.com/NORAD/elements/1999-025.txt. Accessed 30 Aug 2016 and 30 Aug 2017. 

  8. 10.1016/j.actaastro.2019.09.002 Forshaw JL, Aglietti GS, Fellowes S, Salmon T, Retat I, Hall A, et al. 2020. The active space debris removal mission RemoveDebris. Part 1: from concept to launch. Acta Astronaut. 168:293-309. 

  9. 10.1016/j.asr.2018.02.021 Hakima H, Bazzocchi MC, Emami MR. 2018. A deorbiter CubeSat for active orbital debris removal. Adv Space Res. 61(9):2377-2392.10.1016/j.asr.2018.02.021 

  10. Hypervelocity projectile datasheet. https://www.baesystems.com/en/download-en/20190320154752/1434555443512.pdf. Accessed 5 Jan 2020. 

  11. 10.1016/j.actaastro.2017.12.014 Jarry A, Bonnal C, Dupont C, Missonnier S, Lequette L, Masson F. 2019. SRM plume: A candidate as space debris braking system for Just-In-Time Collision avoidance maneuver. Acta Astronaut. 158:185-197.10.1016/j.actaastro.2017.12.014 

  12. 10.1016/j.actaastro.2019.05.055 Kelly P, Bevilacqua R. 2019. An optimized analytical solution for geostationary debris removal using solar sails. Acta Astronaut. 162:72-86.10.1016/j.actaastro.2019.05.055 

  13. 10.1029/JA083iA06p02637 Kessler DJ, Cour-Palais BG. 1978. Collision frequency of artificial satellites: the creation of a debris belt. J Geophys Res Space Phys. 83(A6):2637-2646.10.1029/JA083iA06p02637 

  14. 10.1016/j.actaastro.2019.08.016 Khoroshylov S. 2019. Out-of-plane relative control of an ion beam shepherd satellite using yaw attitude deviations. Acta Astronaut. 164:254-261.10.1016/j.actaastro.2019.08.016 

  15. Launch of space-debris-removal experiment delayed amid safety reviews. https://spacenews.com/launch-of-space-debris-removal-experiment-delayed-due-to-safety-reviews/. Accessed 24 Feb 2020. 

  16. 10.1016/j.asr.2017.10.008 Li H, Li J, Jiang F. 2018. Dynamics and control for contactless interaction between spacecraft and tumbling debris. Adv Space Res. 61(1):154-166.10.1016/j.asr.2017.10.008 

  17. 10.1016/j.asr.2018.01.033 Liu X, Lu Y, Zhou Y, Yin Y. 2018. Prospects of using a permanent magnetic end effector to despin and detumble an uncooperative target. Adv Space Res. 61(8):2147-2158.10.1016/j.asr.2018.01.033 

  18. 10.1016/j.asr.2018.11.017 Liu YQ, Yu ZW, Liu XF, Chen JB, Cai GP. 2019. Active detumbling technology for noncooperative space target with energy dissipation. Adv Space Res. 63(5):1813-1823.10.1016/j.asr.2018.11.017 

  19. 10.1016/j.asr.2019.05.029 Lu Y, Huang P, Meng Z. 2019. Adaptive anti-windup control of post-capture combination via tethered space robot. Adv Space Res. 64(4):847-860.10.1016/j.asr.2019.05.029 

  20. Navy lasers, railgun, and gun-launched guided projectile: Background and issues for congress. https://fas.org/sgp/crs/weapons/R44175.pdf. Accessed 5 Jan 2020. 

  21. Navy railgun ramps up in test shots. https://breakingdefense.com/2017/05/navy-railgun-ramps-up-in-test-shots/. Accessed 5 Jan 2020. 

  22. Navy’s new railgun can hurl a shell over 5,000 Mph. https://www.wired.com/2014/04/electromagnetic-railgun-launcher/. Accessed 5 Jan 2020. 

  23. 10.1016/j.asr.2019.09.048 Olivieri L, Francesconi A. 2020. Large constellations assessment and optimization in LEO space debris environment. Adv Space Res. 65(1):351-363.10.1016/j.asr.2019.09.048 

  24. 10.1016/j.asr.2019.03.024 Razzaghi P, Al Khatib E, Bakhtiari S. 2019. Sliding mode and SDRE control laws on a tethered satellite system to de-orbit space debris. Adv Space Res. 64(1):18-27.10.1016/j.asr.2019.03.024 

  25. 10.1016/j.asr.2019.10.041 Shan M, Guo J, Gill E. 2020. An analysis of the flexibility modeling of a net for space debris removal. Adv Space Res. 65(3):1083-1094.10.1016/j.asr.2019.10.041 

  26. 10.1016/j.asr.2017.12.026 St-Onge D, Sharf I, Sagnieres L, Gosselin C. 2018. A deployable mechanism concept for the collection of small-to-medium-size space debris. Adv Space Res. 61(5):1286-1297.10.1016/j.asr.2017.12.026 

  27. Space debris laser ranging at Yunnan observatories. https://cddis.nasa.gov/lw19/docs/2014/Papers/3049_Li_paper.pdf. Accessed 12 Mar 2020. 

  28. Swiss startup ClearSpace wins ESA contract to deorbit Vega rocket debris. https://spacenews.com/swiss-startup-clearspace-wins-esa-contract-to-deorbit-vega-rocket-debris/. Accessed 24 Feb 2020. 

  29. 10.1016/j.actaastro.2019.05.054 Underwood C, Viquerat A, Schenk M, Taylor B, Massimiani C, Duke R, et al. 2019. InflateSail de-orbit flight demonstration results and follow-on drag-sail applications. Acta Astronaut. 162:344-358.10.1016/j.actaastro.2019.05.054 

  30. U.S. navy demonstrates world’s most powerful EMRG at 10 MJ. https://www.navy.mil/submit/display.asp?story_id=34718. Accessed 5 Jan 2020. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로