$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Flat cutoff probe for real-time electron density measurement in industrial plasma processing 원문보기

Plasma sources science & technology, v.29 no.3, 2020년, pp.035016 -   

Yeom, H J (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Kim, J H (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Choi, D H (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Choi, E S (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Yoon, M Y (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  Seong, D J (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea) ,  You, Shin Jae (Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea) ,  Lee, Hyo-Chang (Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

The microwave cutoff probe (CP) is an accurate diagnostic technique to measure absolute electron density even in processing gas plasmas. Because this technique needs the installation of two probe tips and a probe body in the plasma chamber, it may cause plasma perturbation in semiconductor plasma pr...

참고문헌 (56)

  1. [1] Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley) 10.1002/0471724254 Lieberman M A and Lichtenberg A J Principles of Plasma Discharges and Materials Processing 2005 

  2. [2] Chen F F 2013 Introduction to Plasma Physics and Controlled Fusion (New York: Plenum Press) Chen F F Introduction to Plasma Physics and Controlled Fusion 2013 

  3. [3] Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) 10.1017/CBO9780511974342 Chabert P and Braithwaite N Physics of Radio-Frequency Plasmas 2011 

  4. [4] Lee H-C 2018 Review of inductively coupled plasmas: nano-applications and bistable hysteresis physics Appl. Phys. Rev. 5 011108 10.1063/1.5012001 Review of inductively coupled plasmas: nano-applications and bistable hysteresis physics Lee H-C Appl. Phys. Rev. 5 011108 2018 

  5. [5] Schulze J, Donkó Z, Schüngel E and Czarnetzki U 2011 Secondary electrons in dual-frequency capacitive radio frequency discharges Plasma Sources Sci. Technol. 20 045007 10.1088/0963-0252/20/4/045007 Secondary electrons in dual-frequency capacitive radio frequency discharges Schulze J, Donkó Z, Schüngel E and Czarnetzki U Plasma Sources Sci. Technol. 0963-0252 20 4 045007 2011 045007 

  6. [6] Ahr P, Schüngel E, Schulze J, Tsankov T V and Czarnetzki U 2015 Influence of a phase-locked RF substrate bias on the E- to H-mode transition in an inductively coupled plasma Plasma Sources Sci. Technol. 24 044006 10.1088/0963-0252/24/4/044006 Influence of a phase-locked RF substrate bias on the E- to H-mode transition in an inductively coupled plasma Ahr P, Schüngel E, Schulze J, Tsankov T V and Czarnetzki U Plasma Sources Sci. Technol. 0963-0252 24 4 044006 2015 044006 

  7. [7] Lee H C and Chung C W 2014 Control of electron energy distribution by adding a pulse inductive field in capacitive discharge Plasma Sources Sci. Technol. 23 062002 10.1088/0963-0252/23/6/062002 Control of electron energy distribution by adding a pulse inductive field in capacitive discharge Lee H C and Chung C W Plasma Sources Sci. Technol. 0963-0252 23 6 062002 2014 062002 

  8. [8] Lee H C and Chung C W 2015 Electron heating and control of electron energy distribution for the enhancement of the plasma ashing processing Plasma Sources Sci. Technol. 24 24001 10.1088/0963-0252/24/2/024001 Electron heating and control of electron energy distribution for the enhancement of the plasma ashing processing Lee H C and Chung C W Plasma Sources Sci. Technol. 24 24001 2015 

  9. [9] Berndt J, Kovačević E, Selenin V, Stefanović I and Winter J 2006 Anomalous behaviour of the electron density in a pulsed complex plasma Plasma Sources Sci. Technol. 15 18–22 10.1088/0963-0252/15/1/003 Anomalous behaviour of the electron density in a pulsed complex plasma Berndt J, Kovačević E, Selenin V, Stefanović I and Winter J Plasma Sources Sci. Technol. 0963-0252 15 1 003 2006 18 22 

  10. [10] Keesee A M and Scime E E 2007 Neutral density profiles in argon helicon plasmas Plasma Sources Sci. Technol. 16 742–9 10.1088/0963-0252/16/4/008 Neutral density profiles in argon helicon plasmas Keesee A M and Scime E E Plasma Sources Sci. Technol. 0963-0252 16 4 008 2007 742 749 

  11. [11] Braithwaite N S J and Franklin R N 2009 Reflections on electrical probes Plasma Sources Sci. Technol. 18 014008 10.1088/0963-0252/18/1/014008 Reflections on electrical probes Braithwaite N S J and Franklin R N Plasma Sources Sci. Technol. 0963-0252 18 1 014008 2009 014008 

  12. [12] Peverall R and Ritchie G A D 2019 Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas Plasma Sources Sci. Technol. 28 073002 10.1088/1361-6595/ab2956 Spectroscopy techniques and the measurement of molecular radical densities in atmospheric pressure plasmas Peverall R and Ritchie G A D Plasma Sources Sci. Technol. 0963-0252 28 7 073002 2019 

  13. [13] Kim J H, Seong D J, Lim J Y and Chung K H 2003 Plasma frequency measurements for absolute plasma density by means of wave cutoff method Appl. Phys. Lett. 83 4725–7 10.1063/1.1632026 Plasma frequency measurements for absolute plasma density by means of wave cutoff method Kim J H, Seong D J, Lim J Y and Chung K H Appl. Phys. Lett. 83 2003 4725 4727 

  14. [14] Blackwell D D, Walker D N and Amatucci W E 2005 Measurement of absolute electron density with a plasma impedance probe Rev. Sci. Instrum. 76 1–7 10.1063/1.1847608 Measurement of absolute electron density with a plasma impedance probe Blackwell D D, Walker D N and Amatucci W E Rev. Sci. Instrum. 76 2005 1 7 

  15. [15] Kokura H, Nakamura K, Ghanashev I P and Sugai H 1999 Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas Japan. J. Appl. Phys. 1 38 5262–6 10.1143/JJAP.38.5262 Plasma absorption probe for measuring electron density in an environment soiled with processing plasmas Kokura H, Nakamura K, Ghanashev I P and Sugai H Japan. J. Appl. Phys. 0021-4922 38 1 1999 5262 5266 

  16. [16] Lapke M, Mussenbrock T and Brinkmann R P 2008 The multipole resonance probe: a concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas Appl. Phys. Lett. 93 051502 10.1063/1.2966351 The multipole resonance probe: a concept for simultaneous determination of plasma density, electron temperature, and collision rate in low-pressure plasmas Lapke M, Mussenbrock T and Brinkmann R P Appl. Phys. Lett. 93 2008 051502 

  17. [17] Piejak R B, Godyak V A, Garner R, Alexandrovich B M and Sternberg N 2004 The hairpin resonator: a plasma density measuring technique revisited J. Appl. Phys. 95 3785–91 10.1063/1.1652247 The hairpin resonator: a plasma density measuring technique revisited Piejak R B, Godyak V A, Garner R, Alexandrovich B M and Sternberg N J. Appl. Phys. 95 2004 3785 3791 

  18. [18] Chen F F 2009 Langmuir probes in RF plasma: surprising validity of OML theory Plasma Sources Sci. Technol. 18 035012 10.1088/0963-0252/18/3/035012 Langmuir probes in RF plasma: surprising validity of OML theory Chen F F Plasma Sources Sci. Technol. 0963-0252 18 3 035012 2009 035012 

  19. [19] Godyak V A, P R B and Alexandrovich B M 1992 Measurements of electron energy distribution in low-pressure Plasma Sources Sci. Technol. 1 36–58 10.1088/0963-0252/1/1/006 Measurements of electron energy distribution in low-pressure Godyak V A, P R B and Alexandrovich B M Plasma Sources Sci. Technol. 0963-0252 1 1 006 1992 36 58 

  20. [20] Kaupe J, Riedl P, Coenen D and Mitic S 2019 Temporal evolution of electron density and temperature in low pressure transient Ar/N2 plasmas estimated by optical emission spectroscopy Plasma Sources Sci. Technol. 28 065012 10.1088/1361-6595/ab252d Temporal evolution of electron density and temperature in low pressure transient Ar/N2 plasmas estimated by optical emission spectroscopy Kaupe J, Riedl P, Coenen D and Mitic S Plasma Sources Sci. Technol. 0963-0252 28 6 065012 2019 

  21. [21] Blackwell D D, Walker D N, Messer S J and Amatucci W E 2005 Characteristics of the plasma impedance probe with constant bias Phys. Plasmas 12 1–7 10.1063/1.2039627 Characteristics of the plasma impedance probe with constant bias Blackwell D D, Walker D N, Messer S J and Amatucci W E Phys. Plasmas 12 2005 1 7 

  22. [22] Nakamura K, Ohata M and Sugai H 2003 Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas J. Vac. Sci. Technol. A 21 325–31 10.1116/1.1532740 Highly sensitive plasma absorption probe for measuring low-density high-pressure plasmas Nakamura K, Ohata M and Sugai H J. Vac. Sci. Technol. 0734-2101 21 A 2003 325 331 

  23. [23] Boris D R, Fernsler R F and Walton S G 2015 Measuring the electron density, temperature, and electronegativity in electron beam-generated plasmas produced in argon/SF6 mixtures Plasma Sources Sci. Technol. 24 025032 10.1088/0963-0252/24/2/025032 Measuring the electron density, temperature, and electronegativity in electron beam-generated plasmas produced in argon/SF6 mixtures Boris D R, Fernsler R F and Walton S G Plasma Sources Sci. Technol. 0963-0252 24 2 025032 2015 025032 

  24. [24] You K H, You S J, Kim D W, Na B K, Seo B H, Kim J H, Shin Y H, Seong D J and Chang H Y 2013 A cutoff probe for the measurement of high density plasma Thin Solid Films 547 250–5 10.1016/j.tsf.2013.01.026 A cutoff probe for the measurement of high density plasma You K H, You S J, Kim D W, Na B K, Seo B H, Kim J H, Shin Y H, Seong D J and Chang H Y Thin Solid Films 0040-6090 547 2013 250 255 

  25. [25] Lapke M et al 2011 The multipole resonance probe: characterization of a prototype Plasma Sources Sci. Technol. 20 042001 10.1088/0963-0252/20/4/042001 The multipole resonance probe: characterization of a prototype Lapke M et al Plasma Sources Sci. Technol. 0963-0252 20 4 042001 2011 042001 

  26. [26] Šamara V, Bowden M D and Braithwaite N S J 2012 Modulation of microwave resonance probes Plasma Sources Sci. Technol. 21 024011 10.1088/0963-0252/21/2/024011 Modulation of microwave resonance probes Šamara V, Bowden M D and Braithwaite N S J Plasma Sources Sci. Technol. 0963-0252 21 2 024011 2012 024011 

  27. [27] Kim J H, Choi S C, Shin Y H and Chung K H 2004 Wave cutoff method to measure absolute electron density in cold plasma Rev. Sci. Instrum. 75 2706–10 10.1063/1.1771487 Wave cutoff method to measure absolute electron density in cold plasma Kim J H, Choi S C, Shin Y H and Chung K H Rev. Sci. Instrum. 75 2004 2706 2710 

  28. [28] Kim D W, You S J, Na B K, Kim J H and Chang H Y 2011 An analysis on transmission microwave frequency spectrum of cut-off probe Appl. Phys. Lett. 99 1–4 10.1063/1.3634022 An analysis on transmission microwave frequency spectrum of cut-off probe Kim D W, You S J, Na B K, Kim J H and Chang H Y Appl. Phys. Lett. 99 2011 1 4 

  29. [29] You K H, You S J, Na B K, Kim D W, Kim J H, Seong D J and Chang H Y 2018 Cutoff probe measurement in a magnetized plasma Phys. Plasmas 25 013518 10.1063/1.5006734 Cutoff probe measurement in a magnetized plasma You K H, You S J, Na B K, Kim D W, Kim J H, Seong D J and Chang H Y Phys. Plasmas 25 2018 013518 

  30. [30] Kim D W, You S J, Kim J H, Chang H Y and Oh W Y 2016 Computational comparative study of microwave probes for plasma density measurement Plasma Sources Sci. Technol. 25 035026 10.1088/0963-0252/25/3/035026 Computational comparative study of microwave probes for plasma density measurement Kim D W, You S J, Kim J H, Chang H Y and Oh W Y Plasma Sources Sci. Technol. 0963-0252 25 3 035026 2016 035026 

  31. [31] Godyak V 2017 Comments on plasma diagnostics with microwave probes Phys. Plasmas 24 060702 10.1063/1.4984781 Comments on plasma diagnostics with microwave probes Godyak V Phys. Plasmas 24 2017 060702 

  32. [32] Liang I, Nakamura K and Sugai H 2011 Modeling microwave resonance of curling probe for density measurements in reactive plasmas Appl. Phys. Express 4 4–7 10.1143/APEX.4.066101 Modeling microwave resonance of curling probe for density measurements in reactive plasmas Liang I, Nakamura K and Sugai H Appl. Phys. Express 1882-0786 4 6 066101 2011 4 7 

  33. [33] Pandey A, Sakakibara W, Matsuoka H, Nakamura K and Sugai H 2016 Time-resolved curling-probe measurements of electron density in high frequency pulsed DC discharges Japan. J. Appl. Phys. 55 016101 10.7567/JJAP.55.016101 Time-resolved curling-probe measurements of electron density in high frequency pulsed DC discharges Pandey A, Sakakibara W, Matsuoka H, Nakamura K and Sugai H Japan. J. Appl. Phys. 0021-4922 55 2016 016101 

  34. [34] Pandey A, Tashiro H, Sakakibara W, Nakamura K and Sugai H 2016 Curling probe measurement of a large-volume pulsed plasma with surface magnetic confinement Plasma Sources Sci. Technol. 25 65013 10.1088/0963-0252/25/6/065013 Curling probe measurement of a large-volume pulsed plasma with surface magnetic confinement Pandey A, Tashiro H, Sakakibara W, Nakamura K and Sugai H Plasma Sources Sci. Technol. 25 65013 2016 

  35. [35] Pandey A, Sakakibara W, Matsuoka H, Nakamura K and Sugai H 2014 Curling probe measurement of electron density in pulse-modulated plasma Appl. Phys. Lett. 104 1–5 10.1063/1.4862480 Curling probe measurement of electron density in pulse-modulated plasma Pandey A, Sakakibara W, Matsuoka H, Nakamura K and Sugai H Appl. Phys. Lett. 104 2014 1 5 

  36. [36] Schulz C, Styrnoll T, Awakowicz P and Rolfes I 2015 The planar multipole resonance probe: challenges and prospects of a planar plasma sensor IEEE Trans. Instrum. Meas. 64 857–64 10.1109/TIM.2014.2358111 The planar multipole resonance probe: challenges and prospects of a planar plasma sensor Schulz C, Styrnoll T, Awakowicz P and Rolfes I IEEE Trans. Instrum. Meas. 0018-9456 64 2015 857 864 

  37. [37] Gillman E D, Tejero E, Blackwell D and Amatucci W E 2018 Using a direct current (DC) glow discharge electrode as a non-invasive impedance probe for measuring electron density Rev. Sci. Instrum. 89 113505 10.1063/1.5033329 Using a direct current (DC) glow discharge electrode as a non-invasive impedance probe for measuring electron density Gillman E D, Tejero E, Blackwell D and Amatucci W E Rev. Sci. Instrum. 89 2018 113505 

  38. [38] Gillman E D, Tejero E M, Blackwell D and A W E 2019 Non-invasive method for probing plasma impedance US Patent Specification 2019/0242838 A1 Non-invasive method for probing plasma impedance Gillman E D, Tejero E M, Blackwell D and A W E US Patent Specification 2019 

  39. [39] Kim D W, You S J, Kim S J, Kim J H, Lee J Y, Kang W S and Hur M 2019 Planar cutoff probe for measuring the electron density of low-pressure plasmas Plasma Sources Sci. Technol. 28 015004 10.1088/1361-6595/aaf2b0 Planar cutoff probe for measuring the electron density of low-pressure plasmas Kim D W, You S J, Kim S J, Kim J H, Lee J Y, Kang W S and Hur M Plasma Sources Sci. Technol. 0963-0252 28 1 015004 2019 015004 

  40. [40] Na B K, Kim D W, Kwon J H, Chang H Y, Kim J H and You S J 2012 Computational characterization of cutoff probe system for the measurement of electron density Phys. Plasmas 19 053504 10.1063/1.4719699 Computational characterization of cutoff probe system for the measurement of electron density Na B K, Kim D W, Kwon J H, Chang H Y, Kim J H and You S J Phys. Plasmas 19 2012 053504 

  41. [41] Jun H S, Na B K, Chang H Y and Kim J H 2007 Wave transmission characteristics of a wave-cutoff probe in weakly ionized plasmas Phys. Plasmas 14 093506 10.1063/1.2772602 Wave transmission characteristics of a wave-cutoff probe in weakly ionized plasmas Jun H S, Na B K, Chang H Y and Kim J H Phys. Plasmas 14 2007 093506 

  42. [42] Kwon J H, You S J, Kim D W, Na B K, Kim J H and Shin Y H 2011 Measurement of electron density with the phase-resolved cut-off probe method J. Appl. Phys. 110 023304 10.1063/1.3586561 Measurement of electron density with the phase-resolved cut-off probe method Kwon J H, You S J, Kim D W, Na B K, Kim J H and Shin Y H J. Appl. Phys. 110 2011 023304 

  43. [43] Kwon J H, You S J, Kim J H and Shin Y H 2010 Plasma density measurements by phase resolved cutoff Appl. Phys. Lett. 96 1–4 10.1063/1.3332477 Plasma density measurements by phase resolved cutoff Kwon J H, You S J, Kim J H and Shin Y H Appl. Phys. Lett. 96 2010 1 4 

  44. [44] Kim S J, Lee J J, Kim D W, Kim J H and You S J 2019 A transmission line model of the cutoff probe Plasma Sources Sci. Technol. 28 055014 10.1088/1361-6595/ab1dc8 A transmission line model of the cutoff probe Kim S J, Lee J J, Kim D W, Kim J H and You S J Plasma Sources Sci. Technol. 0963-0252 28 5 055014 2019 

  45. [45] Anon 2000 Time-domain simulation of dispersive media with the finite integration technique Int. J. Numer. Modelling, Electron. Netw. 13 329–48 10.1002/1099-1204(200007/08)13:4<329::AID-JNM383>3.0.CO;2-C Time-domain simulation of dispersive media with the finite integration technique Anon Int. J. Numer. Modelling, Electron. Netw. 13 2000 329 348 

  46. [46] Kim D W, You S J, Kim J H, Chang H Y and Oh W Y 2012 Sheath width effect on the determination of plasma frequency in the cutoff probe Appl. Phys. Lett. 100 244107 10.1063/1.4729442 Sheath width effect on the determination of plasma frequency in the cutoff probe Kim D W, You S J, Kim J H, Chang H Y and Oh W Y Appl. Phys. Lett. 100 2012 244107 

  47. [47] Fofanov Y A, Kuraptsev A S, Sokolov I M and Havey M D 2011 Dispersion of the dielectric permittivity of dense and cold atomic gases Phys. Rev. A 84 1–9 10.1103/PhysRevA.84.053811 Dispersion of the dielectric permittivity of dense and cold atomic gases Fofanov Y A, Kuraptsev A S, Sokolov I M and Havey M D Phys. Rev. 84 A 2011 1 9 

  48. [48] Schmidt J W and Moldover M R 2003 Dielectric permittivity of eight gases measured with cross capacitors Int. J. Thermophys. 24 375–403 10.1023/A:1022963720063 Dielectric permittivity of eight gases measured with cross capacitors Schmidt J W and Moldover M R Int. J. Thermophys. 0195-928X 24 2003 375 403 

  49. [49] Lee H C, Bang J Y and Chung C W 2011 Effects of RF bias power on electron energy distribution function and plasma uniformity in inductively coupled argon plasma Thin Solid Films 519 7009–13 10.1016/j.tsf.2011.01.218 Effects of RF bias power on electron energy distribution function and plasma uniformity in inductively coupled argon plasma Lee H C, Bang J Y and Chung C W Thin Solid Films 0040-6090 519 2011 7009 7013 

  50. [50] Lee H C, Chung C W, Kim J H and Seong D J 2019 Electron energy distribution modification by RF bias in Ar/SF6 inductively coupled plasmas Appl. Phys. Lett. 115 064102 10.1063/1.5110219 Electron energy distribution modification by RF bias in Ar/SF6 inductively coupled plasmas Lee H C, Chung C W, Kim J H and Seong D J Appl. Phys. Lett. 115 2019 064102 

  51. [51] Lee H C, Seo B H, Kwon D C, Kim J H, Seong D J, Oh S J, Chung C W, You K H and Shin C 2017 Evolution of electron temperature in inductively coupled plasma Appl. Phys. Lett. 110 1–6 10.1063/1.4971980 Evolution of electron temperature in inductively coupled plasma Lee H C, Seo B H, Kwon D C, Kim J H, Seong D J, Oh S J, Chung C W, You K H and Shin C Appl. Phys. Lett. 110 2017 1 6 

  52. [52] Godyak V A and Piejak R B 1993 Paradoxical spatial distribution of the electron temperature in a low pressure rf discharge Appl. Phys. Lett. 63 3137–9 10.1063/1.110227 Paradoxical spatial distribution of the electron temperature in a low pressure rf discharge Godyak V A and Piejak R B Appl. Phys. Lett. 63 1993 3137 3139 

  53. [53] Tsendin L D 2010 Nonlocal electron kinetics in gas discharge plasma Usp. Fiz. Nauk 53 133 10.3367/UFNr.0180.201002b.0139 Nonlocal electron kinetics in gas discharge plasma Tsendin L D Usp. Fiz. Nauk 0042-1294 53 2010 133 

  54. [54] Lee H C, Lee M H and Chung C W 2010 Experimental observation of the transition from nonlocal to local electron kinetics in inductively coupled plasmas Appl. Phys. Lett. 96 10–3 10.1063/1.3291038 Experimental observation of the transition from nonlocal to local electron kinetics in inductively coupled plasmas Lee H C, Lee M H and Chung C W Appl. Phys. Lett. 96 2010 10 13 

  55. [55] Lee H C, Hwang H J, Kim Y C, Kim J Y, Kim D H and Chung C W 2013 Experimental verification of the Boltzmann relation in confined plasmas: comparison of noble and molecule gases Phys. Plasmas 20 033504 10.1063/1.4794344 Experimental verification of the Boltzmann relation in confined plasmas: comparison of noble and molecule gases Lee H C, Hwang H J, Kim Y C, Kim J Y, Kim D H and Chung C W Phys. Plasmas 20 2013 033504 

  56. [56] Kim J-H, Chung K-H and Shin Y-H 2005 Analysis of the uncertainty in the measurement of electron densities in plasmas using the wave cutoff method Metrologia 42 110–4 10.1088/0026-1394/42/2/005 Analysis of the uncertainty in the measurement of electron densities in plasmas using the wave cutoff method Kim J-H, Chung K-H and Shin Y-H Metrologia 0026-1394 42 2 005 2005 110 114 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로