$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Optimization of Two Soil-Structure Interaction Parameters Using Dynamic Centrifuge Tests and an Analytical Approach 원문보기

Sustainability, v.12 no.17, 2020년, pp.7113 -   

Kim, Hyun-Uk (R&D Strategy and Planning Office, Central Research Institute of Korea Hydro and Nuclear Power (KHNP), Daejeon 34101, Korea) ,  Ha, Jeong-Gon (Structural Safety & Prognosis Research Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, Korea) ,  Ko, Kil-Wan (Department of Civil and Environmental Engineering, Korea Advanced Institute Science and Technology (KAIST), Daejeon 34141, Korea) ,  Kim, Dong-Soo (Department of Civil and Environmental Engineering, Korea Advanced Institute Science and Technology (KAIST), Daejeon 34141, Korea)

Abstract AI-Helper 아이콘AI-Helper

The response of the structure subjected to an earthquake load is greatly affected by the properties of the structure and soil so it is very important to accurately determine the characteristics of the structure and soil for analysis. However, studies on the effective profile depth where soil propert...

참고문헌 (34)

  1. Wolf, J. (1985). Dynamic Soil-Structure Interaction, Prentice Hall. Section 3.4 Introductory Example. 

  2. Richart, F., Hall, J., and Woods, R. (1970). Vibrations of Soils and Foundations, Prentice-Hall. 

  3. Fang, H.Y. (1991). Foundation Engineering Handbook, Springer Science Business Media. [2nd ed.]. Chapter 15 Foundation Vibrations. 

  4. Stewart, J., Seed, R., and Fenves, G. (1998). PEER-98/07: Empirical Evaluation of Inertial Soil Structure Interaction, Pacific Earthquake Engineering Research (PEER) Center. 

  5. Wong Tables of impedance functions for square foundations on layered media Soil Dyn. Earthq. Eng. 1985 4 64 

  6. Whitman, R. (1972). Soil Publications No-300: Analysis of Soil-Structure Interaction: A State-of-the-Art Review, Massachusetts Institute of Technology. 

  7. Stewart Revisions to soil-structure interaction procedures in NEHRP design provisions Earthq. Spectra 2003 10.1193/1.1596213 19 677 

  8. Kim Rocking effect of a mat foundation on the earthquake response of structures J. Geotech. Geoenviron. Eng. 2015 10.1061/(ASCE)GT.1943-5606.0001207 141 10:04014085 

  9. Ko Comparison between cyclic and dynamic rocking behavior for embedded shallow foundation using centrifuge tests Bull. Earthq. Eng. 2018 10.1007/s10518-018-0409-6 16 5171 

  10. Gavras Database of rocking shallow foundation performance: Dynamic shaking Earthq. Spectra 2020 10.1177/8755293019891727 36 960 

  11. Kim Nonlinear system identification on shallow foundation using Extended Kalman Filter Soil Dyn. Earthq. Eng. 2020 10.1016/j.soildyn.2019.105857 128 105857 

  12. FEMA (2000). Prestandard and Commentary for the Seismic Rehabilitation of Buildings (FEMA 356). 

  13. ATC (1996). Seismic Evaluation and Retrofit of Concrete Buildings (ATC-40), Applied Technology Council. 

  14. FEMA (2004). Improvement of Nonlinear Static Seismic Analysis Procedures (FEMA 440). 

  15. ASCE (2014). Seismic Evaluation and Retrofit of Existing Buildings (ASCE 41-13), American Society of Civil Engineers. Chapter 8 Foundations and Geologic Site Hazards. 

  16. BSSC (1998). NEHRP Recommended Provisions for Seismic Regulation for New Buildings and Other Structures. 

  17. Stewart Seismic Soil-Structure Interaction in Buildings. I: Analytical Methods J. Geotech. Geoenviron. Eng. 1999 10.1061/(ASCE)1090-0241(1999)125:1(26) 125 26 

  18. BSSC (2004). NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures (FEMA 450-1 2003 Edition). 

  19. EPRI (2005). 1010808: Engineering Technical Training Modules for Nuclear Plant Engineers-Civil/Structural Series Module #5-Soil Structure Interaction, EPRI. 

  20. Mikami, A., and Sawada, T. (2004, January 1-6). Time-domain identification system of dynamic soil-structure interaction. Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, BC, Canada. Paper No. 747. 

  21. ASCE (2017). Seismic Analysis of Safety-Related Nuclear Structures (ASCE 4-16), American Society of Civil Engineers. Chapter 5 Soil-Structure Interaction Modeling and Analysis. 

  22. Chowdhury, I., and Dasgupta, S. (2009). Dynamics of Structure and Foundation-A Unified Approach 2. APPLICATIONS, Taylor & Francis Ltd.. Chapter 2, Analysis and Design of Machine Foundation-2.4 Effect of Embedment on Foundation. 

  23. Lee Performance of an equivalent shear beam (ESB) model container for dynamic geotechnical centrifuge tests Soil Dyn. Earthq. Eng. 2013 10.1016/j.soildyn.2012.09.008 44 102 

  24. Taylor, R. (1995). Geotechnical Centrifuge Technology, Taylor & Francis Ltd.. Centrifuge in Modeling: Principle and Scale Effects. 

  25. Chang Earthquake Response Reduction of Building Structures Using Learning-Based Lattice Pattern Active Controller J. Earthq. Eng. 2012 10.1080/13632469.2011.626104 16 317 

  26. Nica A State Space Formulation for the Evaluation of the Pounding Forces During Earthquake Math. Model. Civ. Eng. 2018 10.2478/mmce-2018-0006 14 37 

  27. Karris, S. (2006). Introduction to Simulink with Engineering Applications, Orchard Publications. Chapter 5 The Discrete Blocks Library. 

  28. Kalechman, M. (2009). Practical MATLAB Basics for Engineers, Taylor & Francis Group LLC. Chapter 7 Polynomials and Calculus, a Numerical and Symbolic Approac. 

  29. Ross, P. (1996). The handbook of Software for Engineers and Scientists, Taylor & Francis Group. Section V Engineering Tools, 55 MATLAB in Systems and Controls. 

  30. Chopra, A. (2007). Dynamics of Structures, Prentice Hall. Section 2.2.4 Free Vibration Tests. 

  31. Kim Correlation between the Shear-Wave Velocity and Tip Resistance of Quartz Sand in a Centrifuge J. Geotech. Geoenviron. Eng. 2017 10.1061/(ASCE)GT.1943-5606.0001782 143 04017083 

  32. 10.3390/app7111105 Cho, H., Kim, N., Park, H., and Kim, D. (2017). Settlement Prediction of Footings Using VS. Appl. Sci., 7. 

  33. Rathje Simplified frequency content estimates of earthquake ground motions J. Geotech. Geoenviron. Eng. 1998 10.1061/(ASCE)1090-0241(1998)124:2(150) 124 150 

  34. Kottke, A., and Rathje, E. (2009). PEER-2008/10: Technical Manual for Strata, Pacific Earthquake Engineering Research (PEER) Center. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로