최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Computational mechanics, v.65 no.6, 2020년, pp.1493 - 1508
Choi, Jae-Hoon , Sim, Gi-Dong , Lee, Byung-Chai
초록이 없습니다.
Int J Eng Sci EC Aifantis 30 10 1279 1992 10.1016/0020-7225(92)90141-3 Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3
Comput Methods Appl Mech Eng E Amanatidou 191 15-16 1723 2002 10.1016/S0045-7825(01)00353-X Amanatidou E, Aravas N (2002) Mixed finite element formulations of strain-gradient elasticity problems. Comput Methods Appl Mech Eng 191(15-16):1723-1751. https://doi.org/10.1016/S0045-7825(01)00353-X
Int J Numer Methods Eng H Askes 67 3 400 2006 10.1002/nme.1640 Askes H, Gutiérrez MA (2006) Implicit gradient elasticity. Int J Numer Methods Eng 67(3):400-416. https://doi.org/10.1002/nme.1640
Int J Numer Methods Eng T Belytschko 26 10 2199 1988 10.1002/nme.1620261005 Belytschko T, Lasry D (1988) A fractal patch test. Int J Numer Methods Eng 26(10):2199-2210. https://doi.org/10.1002/nme.1620261005
Int J Numer Methods Eng JS Chen 53 2 435 2001 10.1002/nme.338 Chen JS, Yoon S, Wu CT (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(2):435-466. https://doi.org/10.1002/nme.338
Int J Numer Methods Eng JH Choi 114 12 1245 2018 10.1002/nme.5784 Choi JH, Lee BC (2018) A 3-node C 0 triangular element for the modified couple stress theory based on the smoothed finite element method. Int J Numer Methods Eng 114(12):1245-1261. https://doi.org/10.1002/nme.5784
Int J Numer Methods Eng JH Choi 113 11 1711 2018 10.1002/nme.5717 Choi JH, Lee BC (2018) Development of a 4-node hybrid stress tetrahedral element using a node-based smoothed finite element method. Int J Numer Methods Eng 113(11):1711-1728. https://doi.org/10.1002/nme.5717
Int J Numer Methods Eng JH Choi 116 6 359 2018 10.1002/nme.5928 Choi JH, Lee BC (2018) Rotation-free triangular shell element using node-based smoothed finite element method. Int J Numer Methods Eng 116(6):359-379. https://doi.org/10.1002/nme.5928
RD Cook 2007 Concepts and applications of finite element analysis 4 Cook RD (2007) Concepts and applications of finite element analysis, 4th edn. Wiley, Hoboken
Cosserat E, Cosserat F (1909) Théorie des corps déformables. Herrman
J Appl Phys AC Eringen 54 9 4703 1983 10.1063/1.332803 Eringen AC (1983) On differential equations of non local elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703-4710. https://doi.org/10.1063/1.332803
Int J Eng Sci AC Eringen 2 2 189 1964 10.1016/0020-7225(64)90004-7 Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189-203. https://doi.org/10.1016/0020-7225(64)90004-7
Eng Anal Bound Elem H Feng 62 78 2016 10.1016/j.enganabound.2015.10.001 Feng H, Cui X, Li G (2016) A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng Anal Bound Elem 62:78-92. https://doi.org/10.1016/j.enganabound.2015.10.001
J Comput Phys H Feng 336 580 2017 10.1016/j.jcp.2017.02.022 Feng H, Cui X, Li G (2017) A stable nodal integration method for static and quasi-static electromagnetic field computation. J Comput Phys 336:580-594. https://doi.org/10.1016/j.jcp.2017.02.022
J Mech Phys Solids NA Fleck 41 12 1825 1993 10.1016/0022-5096(93)90072-N Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825-1857
Acta Metall Mater NA Fleck 42 2 475 1994 10.1016/0956-7151(94)90502-9 Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475-487. https://doi.org/10.1016/0956-7151(94)90502-9
Comput Mech N Garg 52 3 709 2013 10.1007/s00466-013-0842-y Garg N, Han CS (2013) A penalty finite element approach for couple stress elasticity. Comput Mech 52(3):709-720. https://doi.org/10.1007/s00466-013-0842-y
Arch Appl Mech N Garg 85 5 587 2015 10.1007/s00419-014-0932-0 Garg N, Han CS (2015) Axisymmetric couple stress elasticity and its finite element formulation with penalty terms. Arch Appl Mech 85(5):587-600. https://doi.org/10.1007/s00419-014-0932-0
Comput Mech ZC He 52 1 221 2013 10.1007/s00466-012-0809-4 He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Liu GR, Li E, Zhou Z (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52(1):221-236. https://doi.org/10.1007/s00466-012-0809-4
Philos Mag S Imatani 85 33-35 4245 2005 10.1080/14786430500363544 Imatani S, Hatada K, Maugin GA (2005) Finite element analysis of crack problems for strain gradient material model. Philos Mag 85(33-35):4245-4256. https://doi.org/10.1080/14786430500363544
Proc K Ned Akad Wet WT Koiter 67 17 1964 Koiter WT (1964) Couples-stress in the theory of elasticity. Proc K Ned Akad Wet 67:17-44
Comput Mech YR Kwon 59 1 117 2017 10.1007/s00466-016-1338-3 Kwon YR, Lee BC (2017) A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput Mech 59(1):117-128. https://doi.org/10.1007/s00466-016-1338-3
Comput Mech YR Kwon 62 1 97 2018 10.1007/s00466-017-1487-z Kwon YR, Lee BC (2018) Three dimensional elements with Lagrange multipliers for the modified couple stress theory. Comput Mech 62(1):97-110. https://doi.org/10.1007/s00466-017-1487-z
J Mech Phys Solids DCC Lam 51 8 1477 2003 10.1016/S0022-5096(03)00053-X Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
Comput Methods Appl Mech Eng E Li 283 664 2015 10.1016/j.cma.2014.09.021 Li E, He ZC, Xu X, Liu GR (2015) Hybrid smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng 283:664-688. https://doi.org/10.1016/j.cma.2014.09.021
Int J Appl Mech GR Liu 1 1 233 2009 10.1142/S1758825109000083 Liu GR, Zhang GY (2009) A novel scheme of strain-constructed point interpolation method for static and dynamic mechanics problems. Int J Appl Mech 1(1):233-258. https://doi.org/10.1142/S1758825109000083
Int J Comput Methods GR Liu 2 4 645 2005 10.1002/nme.2050 Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Comput Methods 2(4):645-665. https://doi.org/10.1002/nme.2050
Comput Mech GR Liu 39 6 859 2007 10.1007/s00466-006-0075-4 Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859-877. https://doi.org/10.1007/s00466-006-0075-4
J Sound Vib GR Liu 320 4-5 1100 2009 10.1016/j.jsv.2008.08.027 Liu GR, Nguyen-Thoi T, Lam KY (2009a) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4-5):1100-1130. https://doi.org/10.1016/j.jsv.2008.08.027
Comput Struct GR Liu 87 1-2 14 2009 10.1016/j.compstruc.2008.09.003 Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009b) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1-2):14-26. https://doi.org/10.1016/j.compstruc.2008.09.003
J Comput Phys GR Liu 228 11 4055 2009 10.1016/j.jcp.2009.02.017 Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009c) A novel Galerkin-like weakform and a superconvergent alpha finite element method (S$$\alpha $$FEM) for mechanics problems using triangular meshes. J Comput Phys 228(11):4055-4087. https://doi.org/10.1016/j.jcp.2009.02.017
Comput Mech GR Liu 43 5 651 2009 10.1007/s00466-008-0336-5 Liu GR, Xu X, Zhang GY, Gu YT (2009d) An extended Galerkin weak form and a point interpolation method with continuous strain field and superconvergence using triangular mesh. Comput Mech 43(5):651-673. https://doi.org/10.1007/s00466-008-0336-5
Finite Elem Anal Des X Ma 75 8 2013 10.1016/j.finel.2013.06.006 Ma X, Chen W (2013) Refined 18-DOF triangular hybrid stress element for couple stress theory. Finite Elem Anal Des 75:8-18. https://doi.org/10.1016/j.finel.2013.06.006
Comput Mech X Ma 53 1 159 2014 10.1007/s00466-013-0899-7 Ma X, Chen W (2014) 24-DOF quadrilateral hybrid stress element for couple stress theory. Comput Mech 53(1):159-172. https://doi.org/10.1007/s00466-013-0899-7
J Micromech Microeng AW Mcfarland 15 5 1060 2005 10.1088/0960-1317/15/5/024 Mcfarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060-1067. https://doi.org/10.1088/0960-1317/15/5/024
Arch Ration Mech Anal RD Mindlin 16 1 51 1964 10.1007/BF00248490 Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51-78
Int J Solids Struct RD Mindlin 4 1 109 1968 10.1016/0020-7683(68)90036-X Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109-124. https://doi.org/10.1016/0020-7683(68)90036-X
Arch Ration Mech Anal RD Mindlin 11 1 415 1962 10.1007/BF00253946 Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415-448. https://doi.org/10.1007/BF00253946
Int J Numer Methods Eng T Nguyen-Thoi 78 3 324 2009 10.1002/nme Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324-353. https://doi.org/10.1002/nme
J Mech Phys Solids WD Nix 46 3 411 1998 10.1016/S0022-5096(97)00086-0 Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411-425
Int J Numer Methods Eng SA Papanicolopulos 77 10 1396 2009 10.1002/nme Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Methods Eng 77(10):1396-1415. https://doi.org/10.1002/nme
Z Angew Math Phys SK Park 59 5 904 2008 10.1007/s00033-006-6073-8 Park SK, Gao XL (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys 59(5):904-917. https://doi.org/10.1007/s00033-006-6073-8
Scr Mater WJ Poole 34 4 559 1996 10.1016/1359-6462(95)00524-2 Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559-564
Comput Struct E Providas 80 27-30 2059 2002 10.1016/S0045-7949(02)00262-6 Providas E, Kattis MA (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80(27-30):2059-2069. https://doi.org/10.1016/S0045-7949(02)00262-6
Int J Numer Methods Eng JY Shu 44 January 1999 373 1999 10.1002/(SICI)1097-0207(19990130)44:33.0.CO;2-7 Shu JY, King WE (1999) Finite Elements for Materials With Strain Gradient Effects. Int J Numer Methods Eng 44(January 1999):373-391. https://doi.org/10.1002/(SICI)1097-0207(19990130)44:33.0.CO;2-7
Int J Numer Methods Eng AK Soh 61 3 433 2004 10.1002/nme.1075 Soh AK, Wanji C (2004) Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test. Int J Numer Methods Eng 61(3):433-454. https://doi.org/10.1002/nme.1075
Acta Metall Mater NA Stelmashenko 41 10 2855 1993 10.1016/0956-7151(93)90100-7 Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855-2865. https://doi.org/10.1016/0956-7151(93)90100-7
Acta Mater JS Stölken 46 14 5109 1998 10.1016/S1359-6454(98)00153-0 Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
Arch Ration Mech Anal RA Toupin 11 1 385 1962 10.1007/BF00253945 Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385-414. https://doi.org/10.1007/BF00253945
Int J Solids Struct F Yang 39 10 2731 2002 10.1016/S0020-7683(02)00152-X Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
Int J Numer Methods Eng A Zervos 73 4 564 2008 10.1002/nme Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Methods Eng 73(4):564-595. https://doi.org/10.1002/nme
J Eng Mech A Zervos 135 3 203 2009 10.1061/(asce)0733-9399(2009)135:3(203) Zervos A, Papanicolopulos SA, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 135(3):203-213. https://doi.org/10.1061/(asce)0733-9399(2009)135:3(203)
Eng Anal Bound Elem G Zhang 87 165 2018 10.1016/j.enganabound.2017.12.002 Zhang G, Lu H, Yu D, Bao Z, Wang H (2018) A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids. Eng Anal Bound Elem 87:165-172. https://doi.org/10.1016/j.enganabound.2017.12.002
Int J Numer Methods Eng ZQ Zhang 90 10 1292 2012 10.1002/nme.4299 Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid-structure interaction problems. Int J Numer Methods Eng 90(10):1292-1320. https://doi.org/10.1002/nme.4299
Finite Elem Anal Des J Zhao 46 8 632 2010 10.1016/j.finel.2010.03.003 Zhao J, Chen W, Ji B (2010) A weak continuity condition of FEM for axisymmetric couple stress theory and an 18-DOF triangular axisymmetric element. Finite Elem Anal Des 46(8):632-644. https://doi.org/10.1016/j.finel.2010.03.003
Int J Numer Methods Eng J Zhao 85 3 269 2011 10.1002/nme Zhao J, Chen WJ, Lo SH (2011) A refined nonconforming quadrilateral element for couple stress/strain gradient elasticity. Int J Numer Methods Eng 85(3):269-288. https://doi.org/10.1002/nme
Comput Mater Sci L Zybell 52 1 268 2012 10.1016/j.commatsci.2011.02.026 Zybell L, Mühlich U, Kuna M, Zhang ZL (2012) A three-dimensional finite element for gradient elasticity based on a mixed-type formulation. Comput Mater Sci 52(1):268-273. https://doi.org/10.1016/j.commatsci.2011.02.026
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.