$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A four-node C $$ ^{0} $$ tetrahedral element based on the node-based smoothing technique for the modified couple stress theory

Computational mechanics, v.65 no.6, 2020년, pp.1493 - 1508  

Choi, Jae-Hoon ,  Sim, Gi-Dong ,  Lee, Byung-Chai

초록이 없습니다.

참고문헌 (59)

  1. Int J Eng Sci EC Aifantis 30 10 1279 1992 10.1016/0020-7225(92)90141-3 Aifantis EC (1992) On the role of gradients in the localization of deformation and fracture. Int J Eng Sci 30(10):1279-1299. https://doi.org/10.1016/0020-7225(92)90141-3 

  2. Comput Methods Appl Mech Eng E Amanatidou 191 15-16 1723 2002 10.1016/S0045-7825(01)00353-X Amanatidou E, Aravas N (2002) Mixed finite element formulations of strain-gradient elasticity problems. Comput Methods Appl Mech Eng 191(15-16):1723-1751. https://doi.org/10.1016/S0045-7825(01)00353-X 

  3. Int J Numer Methods Eng H Askes 67 3 400 2006 10.1002/nme.1640 Askes H, Gutiérrez MA (2006) Implicit gradient elasticity. Int J Numer Methods Eng 67(3):400-416. https://doi.org/10.1002/nme.1640 

  4. Int J Numer Methods Eng T Belytschko 26 10 2199 1988 10.1002/nme.1620261005 Belytschko T, Lasry D (1988) A fractal patch test. Int J Numer Methods Eng 26(10):2199-2210. https://doi.org/10.1002/nme.1620261005 

  5. Int J Numer Methods Eng JS Chen 53 2 435 2001 10.1002/nme.338 Chen JS, Yoon S, Wu CT (2001) A stabilized conforming nodal integration for Galerkin mesh-free methods. Int J Numer Methods Eng 53(2):435-466. https://doi.org/10.1002/nme.338 

  6. Int J Numer Methods Eng JH Choi 114 12 1245 2018 10.1002/nme.5784 Choi JH, Lee BC (2018) A 3-node C 0 triangular element for the modified couple stress theory based on the smoothed finite element method. Int J Numer Methods Eng 114(12):1245-1261. https://doi.org/10.1002/nme.5784 

  7. Int J Numer Methods Eng JH Choi 113 11 1711 2018 10.1002/nme.5717 Choi JH, Lee BC (2018) Development of a 4-node hybrid stress tetrahedral element using a node-based smoothed finite element method. Int J Numer Methods Eng 113(11):1711-1728. https://doi.org/10.1002/nme.5717 

  8. Int J Numer Methods Eng JH Choi 116 6 359 2018 10.1002/nme.5928 Choi JH, Lee BC (2018) Rotation-free triangular shell element using node-based smoothed finite element method. Int J Numer Methods Eng 116(6):359-379. https://doi.org/10.1002/nme.5928 

  9. RD Cook 2007 Concepts and applications of finite element analysis 4 Cook RD (2007) Concepts and applications of finite element analysis, 4th edn. Wiley, Hoboken 

  10. Cosserat E, Cosserat F (1909) Théorie des corps déformables. Herrman 

  11. J Appl Phys AC Eringen 54 9 4703 1983 10.1063/1.332803 Eringen AC (1983) On differential equations of non local elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703-4710. https://doi.org/10.1063/1.332803 

  12. Int J Eng Sci AC Eringen 2 2 189 1964 10.1016/0020-7225(64)90004-7 Eringen AC, Suhubi ES (1964) Nonlinear theory of simple micro-elastic solids-I. Int J Eng Sci 2(2):189-203. https://doi.org/10.1016/0020-7225(64)90004-7 

  13. Eng Anal Bound Elem H Feng 62 78 2016 10.1016/j.enganabound.2015.10.001 Feng H, Cui X, Li G (2016) A stable nodal integration method with strain gradient for static and dynamic analysis of solid mechanics. Eng Anal Bound Elem 62:78-92. https://doi.org/10.1016/j.enganabound.2015.10.001 

  14. J Comput Phys H Feng 336 580 2017 10.1016/j.jcp.2017.02.022 Feng H, Cui X, Li G (2017) A stable nodal integration method for static and quasi-static electromagnetic field computation. J Comput Phys 336:580-594. https://doi.org/10.1016/j.jcp.2017.02.022 

  15. J Mech Phys Solids NA Fleck 41 12 1825 1993 10.1016/0022-5096(93)90072-N Fleck NA, Hutchinson JW (1993) A phenomenological theory for strain gradient effects in plasticity. J Mech Phys Solids 41(12):1825-1857 

  16. Acta Metall Mater NA Fleck 42 2 475 1994 10.1016/0956-7151(94)90502-9 Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475-487. https://doi.org/10.1016/0956-7151(94)90502-9 

  17. Comput Mech N Garg 52 3 709 2013 10.1007/s00466-013-0842-y Garg N, Han CS (2013) A penalty finite element approach for couple stress elasticity. Comput Mech 52(3):709-720. https://doi.org/10.1007/s00466-013-0842-y 

  18. Arch Appl Mech N Garg 85 5 587 2015 10.1007/s00419-014-0932-0 Garg N, Han CS (2015) Axisymmetric couple stress elasticity and its finite element formulation with penalty terms. Arch Appl Mech 85(5):587-600. https://doi.org/10.1007/s00419-014-0932-0 

  19. Comput Mech ZC He 52 1 221 2013 10.1007/s00466-012-0809-4 He ZC, Li GY, Zhong ZH, Cheng AG, Zhang GY, Liu GR, Li E, Zhou Z (2013) An edge-based smoothed tetrahedron finite element method (ES-T-FEM) for 3D static and dynamic problems. Comput Mech 52(1):221-236. https://doi.org/10.1007/s00466-012-0809-4 

  20. Philos Mag S Imatani 85 33-35 4245 2005 10.1080/14786430500363544 Imatani S, Hatada K, Maugin GA (2005) Finite element analysis of crack problems for strain gradient material model. Philos Mag 85(33-35):4245-4256. https://doi.org/10.1080/14786430500363544 

  21. Proc K Ned Akad Wet WT Koiter 67 17 1964 Koiter WT (1964) Couples-stress in the theory of elasticity. Proc K Ned Akad Wet 67:17-44 

  22. Comput Mech YR Kwon 59 1 117 2017 10.1007/s00466-016-1338-3 Kwon YR, Lee BC (2017) A mixed element based on Lagrange multiplier method for modified couple stress theory. Comput Mech 59(1):117-128. https://doi.org/10.1007/s00466-016-1338-3 

  23. Comput Mech YR Kwon 62 1 97 2018 10.1007/s00466-017-1487-z Kwon YR, Lee BC (2018) Three dimensional elements with Lagrange multipliers for the modified couple stress theory. Comput Mech 62(1):97-110. https://doi.org/10.1007/s00466-017-1487-z 

  24. J Mech Phys Solids DCC Lam 51 8 1477 2003 10.1016/S0022-5096(03)00053-X Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X 

  25. Comput Methods Appl Mech Eng E Li 283 664 2015 10.1016/j.cma.2014.09.021 Li E, He ZC, Xu X, Liu GR (2015) Hybrid smoothed finite element method for acoustic problems. Comput Methods Appl Mech Eng 283:664-688. https://doi.org/10.1016/j.cma.2014.09.021 

  26. Int J Appl Mech GR Liu 1 1 233 2009 10.1142/S1758825109000083 Liu GR, Zhang GY (2009) A novel scheme of strain-constructed point interpolation method for static and dynamic mechanics problems. Int J Appl Mech 1(1):233-258. https://doi.org/10.1142/S1758825109000083 

  27. Int J Comput Methods GR Liu 2 4 645 2005 10.1002/nme.2050 Liu GR, Zhang GY, Dai KY, Wang YY, Zhong ZH, Li GY, Han X (2005) A linearly conforming point interpolation method (LC-PIM) for three-dimensional elasticity problems. Int J Comput Methods 2(4):645-665. https://doi.org/10.1002/nme.2050 

  28. Comput Mech GR Liu 39 6 859 2007 10.1007/s00466-006-0075-4 Liu GR, Dai KY, Nguyen TT (2007) A smoothed finite element method for mechanics problems. Comput Mech 39(6):859-877. https://doi.org/10.1007/s00466-006-0075-4 

  29. J Sound Vib GR Liu 320 4-5 1100 2009 10.1016/j.jsv.2008.08.027 Liu GR, Nguyen-Thoi T, Lam KY (2009a) An edge-based smoothed finite element method (ES-FEM) for static, free and forced vibration analyses of solids. J Sound Vib 320(4-5):1100-1130. https://doi.org/10.1016/j.jsv.2008.08.027 

  30. Comput Struct GR Liu 87 1-2 14 2009 10.1016/j.compstruc.2008.09.003 Liu GR, Nguyen-Thoi T, Nguyen-Xuan H, Lam KY (2009b) A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems. Comput Struct 87(1-2):14-26. https://doi.org/10.1016/j.compstruc.2008.09.003 

  31. J Comput Phys GR Liu 228 11 4055 2009 10.1016/j.jcp.2009.02.017 Liu GR, Nguyen-Xuan H, Nguyen-Thoi T, Xu X (2009c) A novel Galerkin-like weakform and a superconvergent alpha finite element method (S$$\alpha $$FEM) for mechanics problems using triangular meshes. J Comput Phys 228(11):4055-4087. https://doi.org/10.1016/j.jcp.2009.02.017 

  32. Comput Mech GR Liu 43 5 651 2009 10.1007/s00466-008-0336-5 Liu GR, Xu X, Zhang GY, Gu YT (2009d) An extended Galerkin weak form and a point interpolation method with continuous strain field and superconvergence using triangular mesh. Comput Mech 43(5):651-673. https://doi.org/10.1007/s00466-008-0336-5 

  33. Finite Elem Anal Des X Ma 75 8 2013 10.1016/j.finel.2013.06.006 Ma X, Chen W (2013) Refined 18-DOF triangular hybrid stress element for couple stress theory. Finite Elem Anal Des 75:8-18. https://doi.org/10.1016/j.finel.2013.06.006 

  34. Comput Mech X Ma 53 1 159 2014 10.1007/s00466-013-0899-7 Ma X, Chen W (2014) 24-DOF quadrilateral hybrid stress element for couple stress theory. Comput Mech 53(1):159-172. https://doi.org/10.1007/s00466-013-0899-7 

  35. J Micromech Microeng AW Mcfarland 15 5 1060 2005 10.1088/0960-1317/15/5/024 Mcfarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15(5):1060-1067. https://doi.org/10.1088/0960-1317/15/5/024 

  36. Arch Ration Mech Anal RD Mindlin 16 1 51 1964 10.1007/BF00248490 Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16(1):51-78 

  37. Int J Solids Struct RD Mindlin 4 1 109 1968 10.1016/0020-7683(68)90036-X Mindlin RD, Eshel NN (1968) On first strain-gradient theories in linear elasticity. Int J Solids Struct 4(1):109-124. https://doi.org/10.1016/0020-7683(68)90036-X 

  38. Arch Ration Mech Anal RD Mindlin 11 1 415 1962 10.1007/BF00253946 Mindlin RD, Tiersten HF (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415-448. https://doi.org/10.1007/BF00253946 

  39. Int J Numer Methods Eng T Nguyen-Thoi 78 3 324 2009 10.1002/nme Nguyen-Thoi T, Liu GR, Lam KY, Zhang GY (2009) A face-based smoothed finite element method (FS-FEM) for 3D linear and geometrically non-linear solid mechanics problems using 4-node tetrahedral elements. Int J Numer Methods Eng 78(3):324-353. https://doi.org/10.1002/nme 

  40. J Mech Phys Solids WD Nix 46 3 411 1998 10.1016/S0022-5096(97)00086-0 Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46(3):411-425 

  41. Int J Numer Methods Eng SA Papanicolopulos 77 10 1396 2009 10.1002/nme Papanicolopulos SA, Zervos A, Vardoulakis I (2009) A three-dimensional C1 finite element for gradient elasticity. Int J Numer Methods Eng 77(10):1396-1415. https://doi.org/10.1002/nme 

  42. Z Angew Math Phys SK Park 59 5 904 2008 10.1007/s00033-006-6073-8 Park SK, Gao XL (2008) Variational formulation of a modified couple stress theory and its application to a simple shear problem. Z Angew Math Phys 59(5):904-917. https://doi.org/10.1007/s00033-006-6073-8 

  43. Scr Mater WJ Poole 34 4 559 1996 10.1016/1359-6462(95)00524-2 Poole WJ, Ashby MF, Fleck NA (1996) Micro-hardness of annealed and work-hardened copper polycrystals. Scr Mater 34(4):559-564 

  44. Comput Struct E Providas 80 27-30 2059 2002 10.1016/S0045-7949(02)00262-6 Providas E, Kattis MA (2002) Finite element method in plane Cosserat elasticity. Comput Struct 80(27-30):2059-2069. https://doi.org/10.1016/S0045-7949(02)00262-6 

  45. Int J Numer Methods Eng JY Shu 44 January 1999 373 1999 10.1002/(SICI)1097-0207(19990130)44:33.0.CO;2-7 Shu JY, King WE (1999) Finite Elements for Materials With Strain Gradient Effects. Int J Numer Methods Eng 44(January 1999):373-391. https://doi.org/10.1002/(SICI)1097-0207(19990130)44:33.0.CO;2-7 

  46. Int J Numer Methods Eng AK Soh 61 3 433 2004 10.1002/nme.1075 Soh AK, Wanji C (2004) Finite element formulations of strain gradient theory for microstructures and the C0-1 patch test. Int J Numer Methods Eng 61(3):433-454. https://doi.org/10.1002/nme.1075 

  47. Acta Metall Mater NA Stelmashenko 41 10 2855 1993 10.1016/0956-7151(93)90100-7 Stelmashenko NA, Walls MG, Brown LM, Milman YV (1993) Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall Mater 41(10):2855-2865. https://doi.org/10.1016/0956-7151(93)90100-7 

  48. Acta Mater JS Stölken 46 14 5109 1998 10.1016/S1359-6454(98)00153-0 Stölken JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46(14):5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0 

  49. Arch Ration Mech Anal RA Toupin 11 1 385 1962 10.1007/BF00253945 Toupin RA (1962) Elastic materials with couple-stresses. Arch Ration Mech Anal 11(1):385-414. https://doi.org/10.1007/BF00253945 

  50. DS Watkins 2004 Fundamentals of matrix computations 3 10.2307/2153000 Watkins DS (2004) Fundamentals of matrix computations, 3rd edn. Wiley, Hoboken. https://doi.org/10.2307/2153000 

  51. Int J Solids Struct F Yang 39 10 2731 2002 10.1016/S0020-7683(02)00152-X Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X 

  52. Int J Numer Methods Eng A Zervos 73 4 564 2008 10.1002/nme Zervos A (2008) Finite elements for elasticity with microstructure and gradient elasticity. Int J Numer Methods Eng 73(4):564-595. https://doi.org/10.1002/nme 

  53. J Eng Mech A Zervos 135 3 203 2009 10.1061/(asce)0733-9399(2009)135:3(203) Zervos A, Papanicolopulos SA, Vardoulakis I (2009) Two finite-element discretizations for gradient elasticity. J Eng Mech 135(3):203-213. https://doi.org/10.1061/(asce)0733-9399(2009)135:3(203) 

  54. Eng Anal Bound Elem G Zhang 87 165 2018 10.1016/j.enganabound.2017.12.002 Zhang G, Lu H, Yu D, Bao Z, Wang H (2018) A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids. Eng Anal Bound Elem 87:165-172. https://doi.org/10.1016/j.enganabound.2017.12.002 

  55. Int J Numer Methods Eng ZQ Zhang 90 10 1292 2012 10.1002/nme.4299 Zhang ZQ, Liu GR, Khoo BC (2012) Immersed smoothed finite element method for two dimensional fluid-structure interaction problems. Int J Numer Methods Eng 90(10):1292-1320. https://doi.org/10.1002/nme.4299 

  56. Finite Elem Anal Des J Zhao 46 8 632 2010 10.1016/j.finel.2010.03.003 Zhao J, Chen W, Ji B (2010) A weak continuity condition of FEM for axisymmetric couple stress theory and an 18-DOF triangular axisymmetric element. Finite Elem Anal Des 46(8):632-644. https://doi.org/10.1016/j.finel.2010.03.003 

  57. Int J Numer Methods Eng J Zhao 85 3 269 2011 10.1002/nme Zhao J, Chen WJ, Lo SH (2011) A refined nonconforming quadrilateral element for couple stress/strain gradient elasticity. Int J Numer Methods Eng 85(3):269-288. https://doi.org/10.1002/nme 

  58. OC Zienkiewicz 2005 The finite element method: its basis and fundamentals 6 10.1016/c2009-0-24909-9 Zienkiewicz OC, Taylor RL, Zhu JZ (2005) The finite element method: its basis and fundamentals, 6th edn. Elsevier, Amsterdam. https://doi.org/10.1016/c2009-0-24909-9 

  59. Comput Mater Sci L Zybell 52 1 268 2012 10.1016/j.commatsci.2011.02.026 Zybell L, Mühlich U, Kuna M, Zhang ZL (2012) A three-dimensional finite element for gradient elasticity based on a mixed-type formulation. Comput Mater Sci 52(1):268-273. https://doi.org/10.1016/j.commatsci.2011.02.026 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로