$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Improvements of 6S Look-Up-Table Based Surface Reflectance Employing Minimum Curvature Surface Method

Asia-Pacific journal of atmospheric sciences, v.56 no.2, 2020년, pp.235 - 248  

Lee, Kyeong-Sang ,  Lee, Chang Suk ,  Seo, Minji ,  Choi, Sungwon ,  Seong, Noh-Hun ,  Jin, Donghyun ,  Yeom, Jong-Min ,  Han, Kyung-Soo

Abstract AI-Helper 아이콘AI-Helper

AbstractWe propose a methodology employing an interpolation technique on the Second Simulation of a Satellite Signal (6S) look-up table (LUT) to improve surface reflectance retrieval using Himawari-8/Advanced Himawari Imager (AHI). A minimum curvature surface (MCS) technique was used to refine the 6...

참고문헌 (42)

  1. 10.1117/12.366315 Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.Y., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Felde J.W., Gardner J., Hokeb M., Jeongb L.S., Pukallb B., Mellob J., Ratkowskib A., Burke H.-H.: Atmospheric correction for shortwave spectral imagery based on modtran4. Proc. SPIE 3753, Imaging Spectrometry V, 61-69 (1999). https://doi.org/10.1117/12.366315 

  2. Geosci. Model Dev. T Chai 7 1247 2014 10.5194/gmd-7-1247-2014 Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247-1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014 

  3. Remote Sens. YY Choi 10 2013 2018 10.3390/rs10122013 Choi, Y.Y., Suh, M.S.: Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 10, 2013 (2018). https://doi.org/10.3390/rs10122013 

  4. Renew. Sust. Energ. Rev. M Despotovic 56 246 2016 10.1016/j.rser.2015.11.058 Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S.: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sust. Energ. Rev. 56, 246-260 (2016). https://doi.org/10.1016/j.rser.2015.11.058 

  5. Remote Sens. A Dietz 9 57 2017 10.3390/rs9010057 Dietz, A., Klein, I., Gessner, U., Frey, C., Kuenzer, C., Dech, S.: Detection of water bodies from AVHRR data-a TIMELINE thematic processor. Remote Sens. 9, 57 (2017). https://doi.org/10.3390/rs9010057 

  6. ISPRS J. Photogramm. Remote Sens. P Dorji 144 81 2018 10.1016/j.isprsjprs.2018.06.019 Dorji, P., Fearns, P.: Atmospheric correction of geostationary Himawari-8 satellite data for total suspended sediment mapping: a case study in the coastal waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 144, 81-93 (2018). https://doi.org/10.1016/j.isprsjprs.2018.06.019 

  7. Franch, B., Roger J.C., Vermote E.F.: Suomi-NPP VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD). Available at https://viirsland.gsfc.nasa.gov/PDF/ATBD_VIIRS_SR_v2.pdf. Accessed 10 October 2016 

  8. Int. J. Remote Sens. RS Fraser 13 541 1992 10.1080/01431169208904056 Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Markham, B.L., Mattoo, S.: Algorithm for atmospheric corrections of aircraft and satellite imagery. Int. J. Remote Sens. 13, 541-557 (1992). https://doi.org/10.1080/01431169208904056 

  9. Remote Sens. Environ. JA Gittings 189 56 2017 10.1016/j.rse.2016.10.043 Gittings, J.A., Raitsos, D.E., Racault, M.F., Brewin, R.J., Pradhan, Y., Sathyendranath, S., Platt, T.: Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 189, 56-66 (2017). https://doi.org/10.1016/j.rse.2016.10.043 

  10. J. Surv. Eng. M Grgić 142 05015004 2015 10.1061/(ASCE)SU.1943-5428.0000154 Grgić, M., Varga, M., Bašić, T.: Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. J. Surv. Eng. 142, 05015004 (2015). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000154 

  11. Nat. Hazards Earth Syst. Sci. DG Hadjimitsis 10 89 2010 10.5194/nhess-10-89-2010 Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C.R.I.: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10, 89-95 (2010). https://doi.org/10.5194/nhess-10-89-2010 

  12. 10.1016/B978-0-12-409548-9.10347-1 Hilker, T.: Surface reflectance/bidirectional reflectance distribution function. Elsevier (2018) 

  13. Remote Sens. Environ. JC Jiménez-Muñoz 114 2195 2010 10.1016/j.rse.2010.04.022 Jiménez-Muñoz, J.C., Sobrino, J.A., Mattar, C., Franch, B.: Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 114, 2195-2210 (2010). https://doi.org/10.1016/j.rse.2010.04.022 

  14. Adv. Space Res. YJ Kaufman 7 203 1987 10.1016/0273-1177(87)90313-9 Kaufman, Y.J.: Atmospheric effect on spectral signature-measurements. Adv. Space Res. 7, 203-206 (1987). https://doi.org/10.1016/0273-1177(87)90313-9 

  15. Math. Geosci. JO Kaven 41 1 2009 10.1007/s11004-008-9201-5 Kaven, J.O., Mazzeo, R., Pollard, D.D.: Constraining surface interpolations using elastic plate bending solutions with applications to geologic folding. Math. Geosci. 41, 1-14 (2009). https://doi.org/10.1007/s11004-008-9201-5 

  16. Appl. Opt. SY Kotchenova 45 26 6762 2006 10.1364/AO.45.006762 Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm Jr., F.J.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 45(26), 6762-6774 (2006). https://doi.org/10.1364/AO.45.006762 

  17. Appl. Opt. SY Kotchenova 47 2215 2008 10.1364/AO.47.002215 Kotchenova, S.Y., Vermote, E.F., Levy, R., Lyapustin, A.: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl. Opt. 47, 2215-2226 (2008). https://doi.org/10.1364/AO.47.002215 

  18. Asia-Pac. J. Atmos. Sci. CS Lee 51 91 2015 10.1007/s13143-015-0062-9 Lee, C.S., Yeom, J.M., Lee, H.L., Kim, J.J., Han, K.S.: Sensitivity analysis of 6S-based look-up table for surface reflectance retrieval. Asia-Pac. J. Atmos. Sci. 51, 91-101 (2015). https://doi.org/10.1007/s13143-015-0062-9 

  19. IEEE Trans. Geosci. Remote Sens. S Liang 39 2490 2001 10.1109/36.964986 Liang, S., Fang, H., Chen, M.: Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001). https://doi.org/10.1109/36.964986 

  20. Liang, S., Wang D., He T.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Surface Albedo. NOAA NESDIS CENTER for SATELLITE APPLICATIONS and REARCH, version 1.0 (2010) 

  21. Liang, S., Li X., Wang J.: Advanced remote sensing: terrestrial information extraction and applications (Eds.). Elseview Science: Amsterdam, The Netherlands (2012) 

  22. 10.1029/2010JD014986 Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., Korkin, S.: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 116(D03210), (2011). https://doi.org/10.1029/2010JD014986 

  23. Atmos. Meas. Tech. K Meyer 9 1743 2016 10.5194/amt-9-1743-2016 Meyer, K., Platnick, S., Arnold, G.T., Holz, R.E., Veglio, P., Yorks, J., Wang, C.: Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 μm water vapor absorption band. Atmos. Meas. Tech. 9, 1743 (2016). https://doi.org/10.5194/amt-9-1743-2016 

  24. Int. J. Appl. Earth Obs. Geoinf. HA Nefeslioglu 14 40 2012 10.1016/j.jag.2011.08.005 Nefeslioglu, H.A., San, B.T., Gokceoglu, C., Duman, T.Y.: An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 14, 40-60 (2012). https://doi.org/10.1016/j.jag.2011.08.005 

  25. NMSC: GK-2A AMI Algorithm Theoretical Basis Document. Available at http://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a. Accessed 15 April 2019 

  26. Int. J. Remote Sens. ASL Nunes 29 3523 2008 10.1080/01431160701592445 Nunes, A.S.L., Marcal, A.R.S., Vaughan, R.A.: Fast over-land atmospheric correction of visible and near-infrared satellite images. Int. J. Remote Sens. 29, 3523-3531 (2008). https://doi.org/10.1080/01431160701592445 

  27. Remote Sens. Environ. G Patenaude 93 368 2004 10.1016/j.rse.2004.07.016 Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L.A., Briggs, B.B.J., Dawson, T.P.: Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens. Environ. 93, 368-380 (2004). https://doi.org/10.1016/j.rse.2004.07.016 

  28. Remote Sens. Environ. SR Proud 114 1687 2010 10.1016/j.rse.2010.02.020 Proud, S.R., Rasmussen, M.O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., Anyamba, A.: Improving the SMAC atmospheric correction code by analysis of Meteosat second generation NDVI and surface reflectance data. Remote Sens. Environ. 114, 1687-1698 (2010). https://doi.org/10.1016/j.rse.2010.02.020 

  29. IEEE Trans. Geosci. Remote Sens. Y Qu 52 907 2014 10.1109/TGRS.2013.2245670 Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., Liu, S.: Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 52, 907-919 (2014). https://doi.org/10.1109/TGRS.2013.2245670 

  30. Arab. J. Geosci. M Rabah 6 1263 2013 10.1007/s12517-011-0418-0 Rabah, M., Kaloop, M.: The use of minimum curvature surface technique in geoid computation processing of Egypt. Arab. J. Geosci. 6, 1263-1272 (2013). https://doi.org/10.1007/s12517-011-0418-0 

  31. Remote Sens. Environ. K Ruddick 146 63 2014 10.1016/j.rse.2013.07.039 Ruddick, K., Neukermans, G., Vanhellemont, Q., Jolivet, D.: Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: a review of recent results. Remote Sens. Environ. 146, 63-76 (2014). https://doi.org/10.1016/j.rse.2013.07.039 

  32. Environ. Res. M Rufo 162 219 2018 10.1016/j.envres.2018.01.014 Rufo, M., Antolín, A., Paniagua, J.M., Jiménez, A.: Optimization and comparison of three spatial interpolation methods for electromagnetic levels in the AM band within an urban area. Environ. Res. 162, 219-225 (2018). https://doi.org/10.1016/j.envres.2018.01.014 

  33. Geophysics WHF Smith 55 293 1990 10.1190/1.1442837 Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics. 55, 293-305 (1990). https://doi.org/10.1190/1.1442837 

  34. IEEE Trans. Geosci. Remote Sens. EF Vermote 35 675 1997 10.1109/36.581987 Vermote, E.F., Tanré, D., Deuze, J.L., Herman, M., Morcette, J.J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35, 675-686 (1997). https://doi.org/10.1109/36.581987 

  35. Vermote, E. F., Tanré D., Deuzé J. L., Herman M., Morcrette J. J., Kotchenova S. Y.: Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3, 1-55 (2006) 

  36. Clim. Res. CJ Willmott 30 79 2005 10.3354/cr030079 Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79-82 (2005). https://doi.org/10.3354/cr030079 

  37. J. Geophys. Res. Atmos. X Wu 122 13138 2017 10.1002/2017JD027262 Wu, X., Wen, J., Xiao, Q., Yu, Y., You, D., Hueni, A.: Assessment of NPP VIIRS albedo over heterogeneous crop land in northern China. J. Geophys. Res. Atmos. 122, 13138-13154 (2017). https://doi.org/10.1002/2017JD027262 

  38. Remote Sens. JM Yeom 10 697 2018 10.3390/rs10050697 Yeom, J.M., Ko, J., Hwang, J., Lee, C.S., Choi, C.U., Jeong, S.: Updating absolute radiometric characteristics for KOMPSAT-3 and KOMPSAT-3A multispectral imaging sensors using well-characterized pseudo-invariant tarps and microtops II. Remote Sens. 10, 697 (2018). https://doi.org/10.3390/rs10050697 

  39. Geophys. Res. Lett. K Yumimoto 43 5886 2016 10.1002/2016GL069298 Yumimoto, K., Nagao, T.M., Kikuchi, M., Sekiyama, T.T., Murakami, H., Tanaka, T.Y., Ogi, A., Irie, H., Kharti, P., Okumura, H., Arai, K., Morino, I., Uchino, O., Maki, T.: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 43, 5886-5894 (2016). https://doi.org/10.1002/2016GL069298 

  40. J. Geophys. Res. Atmos. H Zhang 121 10 2016 10.1002/2016JD024859 Zhang, H., Kondragunta, S., Laszlo, I., Liu, H., Remer, L.A., Huang, J., Superczynski, S., Ciren, P.: An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. J. Geophys. Res. Atmos. 121, 10-717 (2016). https://doi.org/10.1002/2016JD024859 

  41. Remote Sens. Environ. W Zhao 76 202 2001 10.1016/S0034-4257(00)00204-2 Zhao, W., Tamura, M., Takahashi, H.: Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ. 76, 202-212 (2001). https://doi.org/10.1016/S0034-4257(00)00204-2 

  42. Int. J. Remote Sens. J Zhou 32 9 2591 2011 10.1080/01431161003698443 Zhou, J., Wang, J., Li, J., Hu, D.: Atmospheric correction of PROBA/CHRIS data in an urban environment. Int. J. Remote Sens. 32(9), 2591-2604 (2011). https://doi.org/10.1080/01431161003698443 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로