최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Asia-Pacific journal of atmospheric sciences, v.56 no.2, 2020년, pp.235 - 248
Lee, Kyeong-Sang , Lee, Chang Suk , Seo, Minji , Choi, Sungwon , Seong, Noh-Hun , Jin, Donghyun , Yeom, Jong-Min , Han, Kyung-Soo
AbstractWe propose a methodology employing an interpolation technique on the Second Simulation of a Satellite Signal (6S) look-up table (LUT) to improve surface reflectance retrieval using Himawari-8/Advanced Himawari Imager (AHI). A minimum curvature surface (MCS) technique was used to refine the 6...
10.1117/12.366315 Adler-Golden S.M., Matthew M.W., Bernstein L.S., Levine R.Y., Berk A., Richtsmeier S.C., Acharya P.K., Anderson G.P., Felde J.W., Gardner J., Hokeb M., Jeongb L.S., Pukallb B., Mellob J., Ratkowskib A., Burke H.-H.: Atmospheric correction for shortwave spectral imagery based on modtran4. Proc. SPIE 3753, Imaging Spectrometry V, 61-69 (1999). https://doi.org/10.1117/12.366315
Geosci. Model Dev. T Chai 7 1247 2014 10.5194/gmd-7-1247-2014 Chai, T., Draxler, R.R.: Root mean square error (RMSE) or mean absolute error (MAE)?-arguments against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247-1250 (2014). https://doi.org/10.5194/gmd-7-1247-2014
Remote Sens. YY Choi 10 2013 2018 10.3390/rs10122013 Choi, Y.Y., Suh, M.S.: Development of Himawari-8/Advanced Himawari Imager (AHI) land surface temperature retrieval algorithm. Remote Sens. 10, 2013 (2018). https://doi.org/10.3390/rs10122013
Renew. Sust. Energ. Rev. M Despotovic 56 246 2016 10.1016/j.rser.2015.11.058 Despotovic, M., Nedic, V., Despotovic, D., Cvetanovic, S.: Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew. Sust. Energ. Rev. 56, 246-260 (2016). https://doi.org/10.1016/j.rser.2015.11.058
Remote Sens. A Dietz 9 57 2017 10.3390/rs9010057 Dietz, A., Klein, I., Gessner, U., Frey, C., Kuenzer, C., Dech, S.: Detection of water bodies from AVHRR data-a TIMELINE thematic processor. Remote Sens. 9, 57 (2017). https://doi.org/10.3390/rs9010057
ISPRS J. Photogramm. Remote Sens. P Dorji 144 81 2018 10.1016/j.isprsjprs.2018.06.019 Dorji, P., Fearns, P.: Atmospheric correction of geostationary Himawari-8 satellite data for total suspended sediment mapping: a case study in the coastal waters of Western Australia. ISPRS J. Photogramm. Remote Sens. 144, 81-93 (2018). https://doi.org/10.1016/j.isprsjprs.2018.06.019
Franch, B., Roger J.C., Vermote E.F.: Suomi-NPP VIIRS Surface Reflectance Algorithm Theoretical Basis Document (ATBD). Available at https://viirsland.gsfc.nasa.gov/PDF/ATBD_VIIRS_SR_v2.pdf. Accessed 10 October 2016
Int. J. Remote Sens. RS Fraser 13 541 1992 10.1080/01431169208904056 Fraser, R.S., Ferrare, R.A., Kaufman, Y.J., Markham, B.L., Mattoo, S.: Algorithm for atmospheric corrections of aircraft and satellite imagery. Int. J. Remote Sens. 13, 541-557 (1992). https://doi.org/10.1080/01431169208904056
Remote Sens. Environ. JA Gittings 189 56 2017 10.1016/j.rse.2016.10.043 Gittings, J.A., Raitsos, D.E., Racault, M.F., Brewin, R.J., Pradhan, Y., Sathyendranath, S., Platt, T.: Seasonal phytoplankton blooms in the Gulf of Aden revealed by remote sensing. Remote Sens. Environ. 189, 56-66 (2017). https://doi.org/10.1016/j.rse.2016.10.043
J. Surv. Eng. M Grgić 142 05015004 2015 10.1061/(ASCE)SU.1943-5428.0000154 Grgić, M., Varga, M., Bašić, T.: Empirical research of interpolation methods in distortion modeling for the coordinate transformation between local and global geodetic datums. J. Surv. Eng. 142, 05015004 (2015). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000154
Nat. Hazards Earth Syst. Sci. DG Hadjimitsis 10 89 2010 10.5194/nhess-10-89-2010 Hadjimitsis, D.G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M.G., Retalis, A., Michaelides, S., Chrysoulakis, N., Toulios, L., Clayton, C.R.I.: Atmospheric correction for satellite remotely sensed data intended for agricultural applications: impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10, 89-95 (2010). https://doi.org/10.5194/nhess-10-89-2010
Remote Sens. Environ. JC Jiménez-Muñoz 114 2195 2010 10.1016/j.rse.2010.04.022 Jiménez-Muñoz, J.C., Sobrino, J.A., Mattar, C., Franch, B.: Atmospheric correction of optical imagery from MODIS and reanalysis atmospheric products. Remote Sens. Environ. 114, 2195-2210 (2010). https://doi.org/10.1016/j.rse.2010.04.022
Adv. Space Res. YJ Kaufman 7 203 1987 10.1016/0273-1177(87)90313-9 Kaufman, Y.J.: Atmospheric effect on spectral signature-measurements. Adv. Space Res. 7, 203-206 (1987). https://doi.org/10.1016/0273-1177(87)90313-9
Math. Geosci. JO Kaven 41 1 2009 10.1007/s11004-008-9201-5 Kaven, J.O., Mazzeo, R., Pollard, D.D.: Constraining surface interpolations using elastic plate bending solutions with applications to geologic folding. Math. Geosci. 41, 1-14 (2009). https://doi.org/10.1007/s11004-008-9201-5
Appl. Opt. SY Kotchenova 45 26 6762 2006 10.1364/AO.45.006762 Kotchenova, S.Y., Vermote, E.F., Matarrese, R., Klemm Jr., F.J.: Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 45(26), 6762-6774 (2006). https://doi.org/10.1364/AO.45.006762
Appl. Opt. SY Kotchenova 47 2215 2008 10.1364/AO.47.002215 Kotchenova, S.Y., Vermote, E.F., Levy, R., Lyapustin, A.: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study. Appl. Opt. 47, 2215-2226 (2008). https://doi.org/10.1364/AO.47.002215
Asia-Pac. J. Atmos. Sci. CS Lee 51 91 2015 10.1007/s13143-015-0062-9 Lee, C.S., Yeom, J.M., Lee, H.L., Kim, J.J., Han, K.S.: Sensitivity analysis of 6S-based look-up table for surface reflectance retrieval. Asia-Pac. J. Atmos. Sci. 51, 91-101 (2015). https://doi.org/10.1007/s13143-015-0062-9
IEEE Trans. Geosci. Remote Sens. S Liang 39 2490 2001 10.1109/36.964986 Liang, S., Fang, H., Chen, M.: Atmospheric correction of Landsat ETM+ land surface imagery. I. Methods. IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001). https://doi.org/10.1109/36.964986
Liang, S., Wang D., He T.: GOES-R Advanced Baseline Imager (ABI) Algorithm Theoretical Basis Document for Surface Albedo. NOAA NESDIS CENTER for SATELLITE APPLICATIONS and REARCH, version 1.0 (2010)
Liang, S., Li X., Wang J.: Advanced remote sensing: terrestrial information extraction and applications (Eds.). Elseview Science: Amsterdam, The Netherlands (2012)
10.1029/2010JD014986 Lyapustin, A., Martonchik, J., Wang, Y., Laszlo, I., Korkin, S.: Multiangle implementation of atmospheric correction (MAIAC): 1. Radiative transfer basis and look-up tables. J. Geophys. Res. Atmos. 116(D03210), (2011). https://doi.org/10.1029/2010JD014986
Atmos. Meas. Tech. K Meyer 9 1743 2016 10.5194/amt-9-1743-2016 Meyer, K., Platnick, S., Arnold, G.T., Holz, R.E., Veglio, P., Yorks, J., Wang, C.: Cirrus cloud optical and microphysical property retrievals from eMAS during SEAC4RS using bi-spectral reflectance measurements within the 1.88 μm water vapor absorption band. Atmos. Meas. Tech. 9, 1743 (2016). https://doi.org/10.5194/amt-9-1743-2016
Int. J. Appl. Earth Obs. Geoinf. HA Nefeslioglu 14 40 2012 10.1016/j.jag.2011.08.005 Nefeslioglu, H.A., San, B.T., Gokceoglu, C., Duman, T.Y.: An assessment on the use of Terra ASTER L3A data in landslide susceptibility mapping. Int. J. Appl. Earth Obs. Geoinf. 14, 40-60 (2012). https://doi.org/10.1016/j.jag.2011.08.005
NMSC: GK-2A AMI Algorithm Theoretical Basis Document. Available at http://nmsc.kma.go.kr/homepage/html/base/cmm/selectPage.do?page=static.edu.atbdGk2a. Accessed 15 April 2019
Int. J. Remote Sens. ASL Nunes 29 3523 2008 10.1080/01431160701592445 Nunes, A.S.L., Marcal, A.R.S., Vaughan, R.A.: Fast over-land atmospheric correction of visible and near-infrared satellite images. Int. J. Remote Sens. 29, 3523-3531 (2008). https://doi.org/10.1080/01431160701592445
Remote Sens. Environ. G Patenaude 93 368 2004 10.1016/j.rse.2004.07.016 Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L.A., Briggs, B.B.J., Dawson, T.P.: Quantifying forest above ground carbon content using LiDAR remote sensing. Remote Sens. Environ. 93, 368-380 (2004). https://doi.org/10.1016/j.rse.2004.07.016
Remote Sens. Environ. SR Proud 114 1687 2010 10.1016/j.rse.2010.02.020 Proud, S.R., Rasmussen, M.O., Fensholt, R., Sandholt, I., Shisanya, C., Mutero, W., Mbow, C., Anyamba, A.: Improving the SMAC atmospheric correction code by analysis of Meteosat second generation NDVI and surface reflectance data. Remote Sens. Environ. 114, 1687-1698 (2010). https://doi.org/10.1016/j.rse.2010.02.020
IEEE Trans. Geosci. Remote Sens. Y Qu 52 907 2014 10.1109/TGRS.2013.2245670 Qu, Y., Liu, Q., Liang, S., Wang, L., Liu, N., Liu, S.: Direct-estimation algorithm for mapping daily land-surface broadband albedo from MODIS data. IEEE Trans. Geosci. Remote Sens. 52, 907-919 (2014). https://doi.org/10.1109/TGRS.2013.2245670
Arab. J. Geosci. M Rabah 6 1263 2013 10.1007/s12517-011-0418-0 Rabah, M., Kaloop, M.: The use of minimum curvature surface technique in geoid computation processing of Egypt. Arab. J. Geosci. 6, 1263-1272 (2013). https://doi.org/10.1007/s12517-011-0418-0
Remote Sens. Environ. K Ruddick 146 63 2014 10.1016/j.rse.2013.07.039 Ruddick, K., Neukermans, G., Vanhellemont, Q., Jolivet, D.: Challenges and opportunities for geostationary ocean colour remote sensing of regional seas: a review of recent results. Remote Sens. Environ. 146, 63-76 (2014). https://doi.org/10.1016/j.rse.2013.07.039
Environ. Res. M Rufo 162 219 2018 10.1016/j.envres.2018.01.014 Rufo, M., Antolín, A., Paniagua, J.M., Jiménez, A.: Optimization and comparison of three spatial interpolation methods for electromagnetic levels in the AM band within an urban area. Environ. Res. 162, 219-225 (2018). https://doi.org/10.1016/j.envres.2018.01.014
Geophysics WHF Smith 55 293 1990 10.1190/1.1442837 Smith, W.H.F., Wessel, P.: Gridding with continuous curvature splines in tension. Geophysics. 55, 293-305 (1990). https://doi.org/10.1190/1.1442837
IEEE Trans. Geosci. Remote Sens. EF Vermote 35 675 1997 10.1109/36.581987 Vermote, E.F., Tanré, D., Deuze, J.L., Herman, M., Morcette, J.J.: Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35, 675-686 (1997). https://doi.org/10.1109/36.581987
Vermote, E. F., Tanré D., Deuzé J. L., Herman M., Morcrette J. J., Kotchenova S. Y.: Second simulation of a satellite signal in the solar spectrum-vector (6SV). 6S User Guide Version, 3, 1-55 (2006)
Clim. Res. CJ Willmott 30 79 2005 10.3354/cr030079 Willmott, C.J., Matsuura, K.: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30, 79-82 (2005). https://doi.org/10.3354/cr030079
J. Geophys. Res. Atmos. X Wu 122 13138 2017 10.1002/2017JD027262 Wu, X., Wen, J., Xiao, Q., Yu, Y., You, D., Hueni, A.: Assessment of NPP VIIRS albedo over heterogeneous crop land in northern China. J. Geophys. Res. Atmos. 122, 13138-13154 (2017). https://doi.org/10.1002/2017JD027262
Remote Sens. JM Yeom 10 697 2018 10.3390/rs10050697 Yeom, J.M., Ko, J., Hwang, J., Lee, C.S., Choi, C.U., Jeong, S.: Updating absolute radiometric characteristics for KOMPSAT-3 and KOMPSAT-3A multispectral imaging sensors using well-characterized pseudo-invariant tarps and microtops II. Remote Sens. 10, 697 (2018). https://doi.org/10.3390/rs10050697
Geophys. Res. Lett. K Yumimoto 43 5886 2016 10.1002/2016GL069298 Yumimoto, K., Nagao, T.M., Kikuchi, M., Sekiyama, T.T., Murakami, H., Tanaka, T.Y., Ogi, A., Irie, H., Kharti, P., Okumura, H., Arai, K., Morino, I., Uchino, O., Maki, T.: Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 43, 5886-5894 (2016). https://doi.org/10.1002/2016GL069298
J. Geophys. Res. Atmos. H Zhang 121 10 2016 10.1002/2016JD024859 Zhang, H., Kondragunta, S., Laszlo, I., Liu, H., Remer, L.A., Huang, J., Superczynski, S., Ciren, P.: An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database. J. Geophys. Res. Atmos. 121, 10-717 (2016). https://doi.org/10.1002/2016JD024859
Remote Sens. Environ. W Zhao 76 202 2001 10.1016/S0034-4257(00)00204-2 Zhao, W., Tamura, M., Takahashi, H.: Atmospheric and spectral corrections for estimating surface albedo from satellite data using 6S code. Remote Sens. Environ. 76, 202-212 (2001). https://doi.org/10.1016/S0034-4257(00)00204-2
Int. J. Remote Sens. J Zhou 32 9 2591 2011 10.1080/01431161003698443 Zhou, J., Wang, J., Li, J., Hu, D.: Atmospheric correction of PROBA/CHRIS data in an urban environment. Int. J. Remote Sens. 32(9), 2591-2604 (2011). https://doi.org/10.1080/01431161003698443
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.