$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cascade reaction engineering on zirconia-supported mesoporous MFI zeolites with tunable Lewis–Brønsted acid sites: a case of the one-pot conversion of furfural to γ-valerolactone 원문보기

RSC advances, v.10 no.58, 2020년, pp.35318 - 35328  

Kim, Kyung Duk (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) ,  Kim, Jaeheon (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) ,  Teoh, Wey Yang (School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia) ,  Kim, Jeong-Chul (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) ,  Huang, Jun (Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney NSW 2006 Australia) ,  Ryoo, Ryong (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr)

Abstract AI-Helper 아이콘AI-Helper

Catalytic cascade reactions are strongly desired as a potential means of combining multistep reactions into a single catalytic reactor. Appropriate catalysts composed of multi-reactive sites to catalyze cascade reactions in a sequential fashion are central to such efforts. Here, we demonstrate a bif...

참고문헌 (47)

  1. Huber G. W. Iborra S. Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering Chem. Rev. 2006 106 9 4044 4098 10.1021/cr068360d 16967928 

  2. Horvath I. T. et al. , gamma-Valerolactone - a sustainable liquid for energy and carbon-based chemicals Green Chem. 2008 10 2 238 242 10.1039/B712863K 

  3. Luo H. Y. et al. , Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein-Ponndorf-Verley reduction of methyl levulinate to gamma-valerolactone J. Catal. 2014 320 198 207 10.1016/j.jcat.2014.10.010 

  4. Yan K. et al. , Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals Appl. Catal., B 2015 179 292 304 10.1016/j.apcatb.2015.04.030 

  5. Alonso D. M. et al. , Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts Catal. Sci. Technol. 2013 3 4 927 931 10.1039/C2CY20689G 

  6. Wright W. R. H. Palkovits R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to gamma-Valerolactone ChemSusChem 2012 5 9 1657 1667 10.1002/cssc.201200111 22890968 

  7. Alonso D. M. Wettstein S. G. Dumesic J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass Green Chem. 2013 15 3 584 595 10.1039/C3GC37065H 

  8. Corma A. Domine M. E. Valencia S. Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite J. Catal. 2003 215 2 294 304 10.1016/S0021-9517(03)00014-9 

  9. Boronat M. Corma A. Renz M. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts J. Phys. Chem. B 2006 110 42 21168 21174 10.1021/jp063249x 17048941 

  10. Renz M. et al. , Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H 2 O 2 Chem.–Eur. J. 2002 8 20 4708 4717 10.1002/1521-3765(20021018)8:20<4708::AID-CHEM4708>3.0.CO;2-U 12561111 

  11. Tang B. et al. , Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides ACS Catal. 2014 4 8 2801 2810 10.1021/cs500891s 

  12. Li P. et al. , Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite J. Phys. Chem. C 2011 115 9 3663 3670 10.1021/jp1076966 

  13. Kang Z. H. Liu H. O. Zhang X. F. Preparation and Characterization of Sn-beta Zeolites by a Two-Step Postsynthesis Method and Their Catalytic Performance for Baeyer-Villiger Oxidation of Cyclohexanone Chin. J. Catal. 2012 33 5 898 904 

  14. Wang J. et al. , Post-synthesized zirconium-containing Beta zeolite in Meerwein-Ponndorf-Verley reduction: Pros and cons Appl. Catal., A 2015 493 112 120 10.1016/j.apcata.2015.01.001 

  15. Dijkmans J. et al. , Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite ACS Catal. 2015 5 2 928 940 10.1021/cs501388e 

  16. Tang B. et al. , Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides Green Chem. 2015 17 3 1744 1755 10.1039/C4GC02116A 

  17. Shamzhy M. et al. , New trends in tailoring active sites in zeolite-based catalysts Chem. Soc. Rev. 2019 48 4 1095 1149 10.1039/C8CS00887F 30624450 

  18. Rao B. S. et al. , One pot selective conversion of furfural to gamma-valerolactone over zirconia containing heteropoly tungstate supported on beta-zeolite catalyst Mol. Catal. 2019 466 52 59 10.1016/j.mcat.2018.12.024 

  19. Lin Y. F. et al. , The synthesis of Lewis acid ZrO 2 nanoparticles and their applications in phospholipid adsorption from Jatropha oil used for biofuel J. Colloid Interface Sci. 2012 368 660 662 10.1016/j.jcis.2011.11.055 22183260 

  20. Kovalenko V. V. et al. , Surface chemistry of nanocrystalline SnO 2 : Effect of thermal treatment and additives Sens. Actuators, B 2007 126 1 52 55 10.1016/j.snb.2006.10.047 

  21. Harima Y. et al. , Lewis-Acid Sites of TiO2 Surface for Adsorption of Organic Dye Having Pyridyl Group as Anchoring Unit J. Phys. Chem. C 2013 117 32 16364 16370 10.1021/jp405835y 

  22. Kim J. et al. , Supporting Nickel To Replace Platinum on Zeolite Nanosponges for Catalytic Hydroisomerization of n-Dodecane ACS Catal. 2018 8 11 10545 10554 10.1021/acscatal.8b03301 

  23. Kim J. C. et al. , Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer-Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range ACS Catal. 2014 4 11 3919 3927 10.1021/cs500784v 

  24. Han J. et al. , Confinement of Supported Metal Catalysts at High Loading in the Mesopore Network of Hierarchical Zeolites, with Access via the Microporous Windows ACS Catal. 2018 8 2 876 879 10.1021/acscatal.7b04183 

  25. Jo C. et al. , MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis Chem. Commun. 2014 50 32 4175 4177 10.1039/C4CC01070A 

  26. Choi M. et al. , Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts Nature 2009 461 7265 246 10.1038/nature08288 19741706 

  27. Lee C. et al. , High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst Catal. Today 2018 303 143 149 10.1016/j.cattod.2017.09.056 

  28. Seo Y. et al. , Characterization of the Surface Acidity of MFI Zeolite Nanosheets by P-31 NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin ACS Catal. 2013 3 4 713 720 10.1021/cs300824e 

  29. Gulec F. Sher F. Karaduman A. Catalytic performance of Cu- and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene Pet. Sci. 2019 16 1 161 172 10.1007/s12182-018-0278-2 

  30. Kim J. C. et al. , Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction ACS Catal. 2015 5 4 2596 2604 10.1021/cs502021a 

  31. Tao Y. S. et al. , Mesopore-modified zeolites: Preparation, characterization, and applications Chem. Rev. 2006 106 3 896 910 10.1021/cr040204o 16522012 

  32. Zhang M. et al. , Shape Selectivity in Hydroisomerization of Hexadecane over Pt Supported on 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48 Ind. Eng. Chem. Res. 2016 55 21 6069 6078 10.1021/acs.iecr.6b01163 

  33. Buzzoni R. et al. , Interaction of pyridine with acidic (H-ZSM5, H-beta, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: An IR investigation Langmuir 1996 12 4 930 940 10.1021/la950571i 

  34. Kustov L. M. et al. , Investigation of the Acidic Properties of Zro2 Modified by So4(2-) Anions J. Catal. 1994 150 1 143 149 10.1006/jcat.1994.1330 

  35. Enumula S. S. et al. , ZrO2/SBA-15 as an efficient catalyst for the production of gamma-valerolactone from biomass-derived levulinic acid in the vapour phase at atmospheric pressure RSC Adv. 2016 6 24 20230 20239 10.1039/C5RA27513J 

  36. Melero J. A. et al. , Rational Optimization of Reaction Conditions for the One-Pot Transformation of Furfural to gamma-Valerolactone over Zr-Al-Beta Zeolite: Toward the Efficient Utilization of Biomass Ind. Eng. Chem. Res. 2018 57 34 11592 11599 10.1021/acs.iecr.8b02475 

  37. Ren Y. M. Cai C. A green procedure for the protection of carbonyl compounds catalyzed by iodine in ionic liquid Tetrahedron Lett. 2008 49 50 7110 7112 10.1016/j.tetlet.2008.09.088 

  38. Augustine J. K. et al. , Highly efficient and chemoselective acetalization and thioacetalization of aldehydes catalyzed by propylphosphonic anhydride ((R) T3P) at room temperature Tetrahedron Lett. 2012 53 37 5030 5033 10.1016/j.tetlet.2012.07.052 

  39. Smirnov A. A. Selishcheva S. A. Yakovlev V. A. Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol Catalysts 2018 8 12 595 10.3390/catal8120595 

  40. Rubio-Caballero J. M. et al. , Acetalization of furfural with zeolites under benign reaction conditions Catal. Today 2014 234 233 236 10.1016/j.cattod.2014.03.004 

  41. Zhang H. W. et al. , A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to gamma-valerolactone J. Catal. 2019 375 56 67 10.1016/j.jcat.2019.05.020 

  42. Song S. et al. , Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization Appl. Catal., B 2017 205 393 403 10.1016/j.apcatb.2016.12.056 

  43. Bui L. et al. , Domino reaction catalyzed by zeolites with Bronsted and Lewis acid sites for the production of gamma-valerolactone from furfural Angew. Chem., Int. Ed. 2013 52 31 8022 8025 10.1002/anie.201302575 

  44. Zhu S. H. et al. , Integrated Conversion of Hemicellulose and Furfural into gamma-Valerolactone over Au/ZrO 2 Catalyst Combined with ZSM-5 ACS Catal. 2016 6 3 2035 2042 10.1021/acscatal.5b02882 

  45. Winoto H. P. Ahn B. S. Jae J. Production of gamma-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: Optimizing the catalyst acid properties and process conditions J. Ind. Eng. Chem. 2016 40 62 71 10.1016/j.jiec.2016.06.007 

  46. Antunes M. M. et al. , One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes J. Catal. 2015 329 522 537 10.1016/j.jcat.2015.05.022 

  47. Zhang T. W. et al. , One-pot production of gamma-valerolactone from furfural using Zr-graphitic carbon nitride/H-beta composite Int. J. Hydrogen Energy 2019 44 29 14527 14535 10.1016/j.ijhydene.2019.04.059 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로