최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기RSC advances, v.10 no.58, 2020년, pp.35318 - 35328
Kim, Kyung Duk (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) , Kim, Jaeheon (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) , Teoh, Wey Yang (School of Chemical Engineering, The University of New South Wales Sydney NSW 2052 Australia) , Kim, Jeong-Chul (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr) , Huang, Jun (Laboratory for Catalysis Engineering, School of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney NSW 2006 Australia) , Ryoo, Ryong (Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Korea rryoo@kaist.ac.kr)
Catalytic cascade reactions are strongly desired as a potential means of combining multistep reactions into a single catalytic reactor. Appropriate catalysts composed of multi-reactive sites to catalyze cascade reactions in a sequential fashion are central to such efforts. Here, we demonstrate a bif...
Huber G. W. Iborra S. Corma A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering Chem. Rev. 2006 106 9 4044 4098 10.1021/cr068360d 16967928
Horvath I. T. et al. , gamma-Valerolactone - a sustainable liquid for energy and carbon-based chemicals Green Chem. 2008 10 2 238 242 10.1039/B712863K
Luo H. Y. et al. , Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein-Ponndorf-Verley reduction of methyl levulinate to gamma-valerolactone J. Catal. 2014 320 198 207 10.1016/j.jcat.2014.10.010
Yan K. et al. , Catalytic reactions of gamma-valerolactone: A platform to fuels and value-added chemicals Appl. Catal., B 2015 179 292 304 10.1016/j.apcatb.2015.04.030
Alonso D. M. et al. , Direct conversion of cellulose to levulinic acid and gamma-valerolactone using solid acid catalysts Catal. Sci. Technol. 2013 3 4 927 931 10.1039/C2CY20689G
Wright W. R. H. Palkovits R. Development of Heterogeneous Catalysts for the Conversion of Levulinic Acid to gamma-Valerolactone ChemSusChem 2012 5 9 1657 1667 10.1002/cssc.201200111 22890968
Alonso D. M. Wettstein S. G. Dumesic J. A. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass Green Chem. 2013 15 3 584 595 10.1039/C3GC37065H
Corma A. Domine M. E. Valencia S. Water-resistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite J. Catal. 2003 215 2 294 304 10.1016/S0021-9517(03)00014-9
Boronat M. Corma A. Renz M. Mechanism of the Meerwein-Ponndorf-Verley-Oppenauer (MPVO) redox equilibrium on Sn- and Zr-beta zeolite catalysts J. Phys. Chem. B 2006 110 42 21168 21174 10.1021/jp063249x 17048941
Renz M. et al. , Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H 2 O 2 Chem.–Eur. J. 2002 8 20 4708 4717 10.1002/1521-3765(20021018)8:20<4708::AID-CHEM4708>3.0.CO;2-U 12561111
Tang B. et al. , Improved Postsynthesis Strategy to Sn-Beta Zeolites as Lewis Acid Catalysts for the Ring-Opening Hydration of Epoxides ACS Catal. 2014 4 8 2801 2810 10.1021/cs500891s
Li P. et al. , Postsynthesis and Selective Oxidation Properties of Nanosized Sn-Beta Zeolite J. Phys. Chem. C 2011 115 9 3663 3670 10.1021/jp1076966
Kang Z. H. Liu H. O. Zhang X. F. Preparation and Characterization of Sn-beta Zeolites by a Two-Step Postsynthesis Method and Their Catalytic Performance for Baeyer-Villiger Oxidation of Cyclohexanone Chin. J. Catal. 2012 33 5 898 904
Wang J. et al. , Post-synthesized zirconium-containing Beta zeolite in Meerwein-Ponndorf-Verley reduction: Pros and cons Appl. Catal., A 2015 493 112 120 10.1016/j.apcata.2015.01.001
Dijkmans J. et al. , Cooperative Catalysis for Multistep Biomass Conversion with Sn/Al Beta Zeolite ACS Catal. 2015 5 2 928 940 10.1021/cs501388e
Tang B. et al. , Mesoporous Zr-Beta zeolites prepared by a post-synthetic strategy as a robust Lewis acid catalyst for the ring-opening aminolysis of epoxides Green Chem. 2015 17 3 1744 1755 10.1039/C4GC02116A
Shamzhy M. et al. , New trends in tailoring active sites in zeolite-based catalysts Chem. Soc. Rev. 2019 48 4 1095 1149 10.1039/C8CS00887F 30624450
Rao B. S. et al. , One pot selective conversion of furfural to gamma-valerolactone over zirconia containing heteropoly tungstate supported on beta-zeolite catalyst Mol. Catal. 2019 466 52 59 10.1016/j.mcat.2018.12.024
Lin Y. F. et al. , The synthesis of Lewis acid ZrO 2 nanoparticles and their applications in phospholipid adsorption from Jatropha oil used for biofuel J. Colloid Interface Sci. 2012 368 660 662 10.1016/j.jcis.2011.11.055 22183260
Kovalenko V. V. et al. , Surface chemistry of nanocrystalline SnO 2 : Effect of thermal treatment and additives Sens. Actuators, B 2007 126 1 52 55 10.1016/j.snb.2006.10.047
Harima Y. et al. , Lewis-Acid Sites of TiO2 Surface for Adsorption of Organic Dye Having Pyridyl Group as Anchoring Unit J. Phys. Chem. C 2013 117 32 16364 16370 10.1021/jp405835y
Kim J. et al. , Supporting Nickel To Replace Platinum on Zeolite Nanosponges for Catalytic Hydroisomerization of n-Dodecane ACS Catal. 2018 8 11 10545 10554 10.1021/acscatal.8b03301
Kim J. C. et al. , Mesoporous MFI Zeolite Nanosponge Supporting Cobalt Nanoparticles as a Fischer-Tropsch Catalyst with High Yield of Branched Hydrocarbons in the Gasoline Range ACS Catal. 2014 4 11 3919 3927 10.1021/cs500784v
Han J. et al. , Confinement of Supported Metal Catalysts at High Loading in the Mesopore Network of Hierarchical Zeolites, with Access via the Microporous Windows ACS Catal. 2018 8 2 876 879 10.1021/acscatal.7b04183
Jo C. et al. , MFI zeolite nanosponges possessing uniform mesopores generated by bulk crystal seeding in the hierarchical surfactant-directed synthesis Chem. Commun. 2014 50 32 4175 4177 10.1039/C4CC01070A
Choi M. et al. , Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts Nature 2009 461 7265 246 10.1038/nature08288 19741706
Lee C. et al. , High utilization of methanol in toluene methylation using MFI zeolite nanosponge catalyst Catal. Today 2018 303 143 149 10.1016/j.cattod.2017.09.056
Seo Y. et al. , Characterization of the Surface Acidity of MFI Zeolite Nanosheets by P-31 NMR of Adsorbed Phosphine Oxides and Catalytic Cracking of Decalin ACS Catal. 2013 3 4 713 720 10.1021/cs300824e
Gulec F. Sher F. Karaduman A. Catalytic performance of Cu- and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene Pet. Sci. 2019 16 1 161 172 10.1007/s12182-018-0278-2
Kim J. C. et al. , Mesoporous MFI Zeolite Nanosponge as a High-Performance Catalyst in the Pechmann Condensation Reaction ACS Catal. 2015 5 4 2596 2604 10.1021/cs502021a
Tao Y. S. et al. , Mesopore-modified zeolites: Preparation, characterization, and applications Chem. Rev. 2006 106 3 896 910 10.1021/cr040204o 16522012
Zhang M. et al. , Shape Selectivity in Hydroisomerization of Hexadecane over Pt Supported on 10-Ring Zeolites: ZSM-22, ZSM-23, ZSM-35, and ZSM-48 Ind. Eng. Chem. Res. 2016 55 21 6069 6078 10.1021/acs.iecr.6b01163
Buzzoni R. et al. , Interaction of pyridine with acidic (H-ZSM5, H-beta, H-MORD zeolites) and superacidic (H-Nafion membrane) systems: An IR investigation Langmuir 1996 12 4 930 940 10.1021/la950571i
Kustov L. M. et al. , Investigation of the Acidic Properties of Zro2 Modified by So4(2-) Anions J. Catal. 1994 150 1 143 149 10.1006/jcat.1994.1330
Enumula S. S. et al. , ZrO2/SBA-15 as an efficient catalyst for the production of gamma-valerolactone from biomass-derived levulinic acid in the vapour phase at atmospheric pressure RSC Adv. 2016 6 24 20230 20239 10.1039/C5RA27513J
Melero J. A. et al. , Rational Optimization of Reaction Conditions for the One-Pot Transformation of Furfural to gamma-Valerolactone over Zr-Al-Beta Zeolite: Toward the Efficient Utilization of Biomass Ind. Eng. Chem. Res. 2018 57 34 11592 11599 10.1021/acs.iecr.8b02475
Ren Y. M. Cai C. A green procedure for the protection of carbonyl compounds catalyzed by iodine in ionic liquid Tetrahedron Lett. 2008 49 50 7110 7112 10.1016/j.tetlet.2008.09.088
Augustine J. K. et al. , Highly efficient and chemoselective acetalization and thioacetalization of aldehydes catalyzed by propylphosphonic anhydride ((R) T3P) at room temperature Tetrahedron Lett. 2012 53 37 5030 5033 10.1016/j.tetlet.2012.07.052
Smirnov A. A. Selishcheva S. A. Yakovlev V. A. Acetalization Catalysts for Synthesis of Valuable Oxygenated Fuel Additives from Glycerol Catalysts 2018 8 12 595 10.3390/catal8120595
Rubio-Caballero J. M. et al. , Acetalization of furfural with zeolites under benign reaction conditions Catal. Today 2014 234 233 236 10.1016/j.cattod.2014.03.004
Zhang H. W. et al. , A combo Zr-HY and Al-HY zeolite catalysts for the one-pot cascade transformation of biomass-derived furfural to gamma-valerolactone J. Catal. 2019 375 56 67 10.1016/j.jcat.2019.05.020
Song S. et al. , Meso-Zr-Al-beta zeolite as a robust catalyst for cascade reactions in biomass valorization Appl. Catal., B 2017 205 393 403 10.1016/j.apcatb.2016.12.056
Bui L. et al. , Domino reaction catalyzed by zeolites with Bronsted and Lewis acid sites for the production of gamma-valerolactone from furfural Angew. Chem., Int. Ed. 2013 52 31 8022 8025 10.1002/anie.201302575
Zhu S. H. et al. , Integrated Conversion of Hemicellulose and Furfural into gamma-Valerolactone over Au/ZrO 2 Catalyst Combined with ZSM-5 ACS Catal. 2016 6 3 2035 2042 10.1021/acscatal.5b02882
Winoto H. P. Ahn B. S. Jae J. Production of gamma-valerolactone from furfural by a single-step process using Sn-Al-Beta zeolites: Optimizing the catalyst acid properties and process conditions J. Ind. Eng. Chem. 2016 40 62 71 10.1016/j.jiec.2016.06.007
Antunes M. M. et al. , One-pot conversion of furfural to useful bio-products in the presence of a Sn,Al-containing zeolite beta catalyst prepared via post-synthesis routes J. Catal. 2015 329 522 537 10.1016/j.jcat.2015.05.022
Zhang T. W. et al. , One-pot production of gamma-valerolactone from furfural using Zr-graphitic carbon nitride/H-beta composite Int. J. Hydrogen Energy 2019 44 29 14527 14535 10.1016/j.ijhydene.2019.04.059
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.