$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A cryogenic silicon interferometer for gravitational-wave detection 원문보기

Classical and quantum gravity, v.37 no.16, 2020년, pp.165003 -   

Adhikari, R X (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) ,  Arai, K (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) ,  Brooks, A F (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) ,  Wipf, C (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) ,  Aguiar, O (Instituto Nacional de Pesquisas Espaciais, 12227-010 Sã) ,  Altin, P (o José) ,  Barr, B (dos Campos, Sã) ,  Barsotti, L (o Paulo, Brazil) ,  Bassiri, R (OzGrav, ANU Centre for Gravitational Astrophysics, Research Schools of Physics, and Astronomy and Astrophysics, The Australian National University, Canberra, 2601, Australia) ,  Bell, A (SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom) ,  Billingsley, G (LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America) ,  Birney, R (Stanford University, Stanford, CA 94305, United States of America) ,  Blair, D (SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom) ,  Bonilla, E (LIGO, California Institute of Technology, Pasadena, CA 91125, Unit) ,  Briggs, J ,  Brown, D D ,  Byer, R ,  Cao, H ,  Constancio, M ,  Cooper, S ,  Corbitt, T ,  Coyne, D ,  Cumming, A ,  Daw, E ,  deRosa, R ,  Eddolls, G ,  Eichholz, J ,  Evans, M ,  Fejer, M ,  Ferreira, E C ,  Freise, A ,  Frolov, V V ,  Gras, S ,  Green, A ,  Grote, H ,  Gustafson, E ,  Hall, E D ,  Hammond, G ,  Harms, J ,  Harry, G ,  Haughian, K ,  Heinert, D ,  Heintze, M ,  Hellman, F ,  Hennig, J ,  Hennig, M ,  Hild, S ,  Hough, J ,  Johnson, W ,  Kamai, B ,  Kapasi, D ,  Komori, K ,  Koptsov, D ,  Korobko, M ,  Korth, W Z ,  Kuns, K ,  Lantz, B ,  Leavey, S ,  Magana-Sandoval, F ,  Mansell, G ,  Markosyan, A ,  Markowitz, A ,  Martin, I ,  Martin, R ,  Martynov, D ,  McClelland, D E ,  McGhee, G ,  McRae, T ,  Mills, J ,  Mitrofanov, V ,  Molina-Ruiz, M ,  Mow-Lowry, C ,  Munch, J ,  Murray, P ,  Ng, S ,  Okada, M A ,  Ottaway, D J ,  Prokhorov, L ,  Quetschke, V ,  Rei

Abstract AI-Helper 아이콘AI-Helper

The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitati...

참고문헌 (132)

  1. [1] Abbott B P, Abbott R, Abbott T D et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett. 116 061102 10.1103/PhysRevLett.116.061102 Observation of gravitational waves from a binary black hole merger Abbott B P, Abbott R, Abbott T D et al Phys. Rev. Lett. 116 061102 2016 

  2. [2] Abbott B P, Abbott R, Abbott T D et al 2017 Multi-messenger observations of a binary neutron star merger Astrophys. J. Lett. 848 L12 10.3847%2F2041-8213%2Faa91c9 Multi-messenger observations of a binary neutron star merger Abbott B P, Abbott R, Abbott T D et al Astrophys. J. Lett. 848 2017 L12 

  3. [3] Miller J, Barsotti L, Vitale S et al 2015 Prospects for doubling the range of Advanced LIGO Phys. Rev. D 91 062005 10.1103/physrevd.91.062005 Prospects for doubling the range of Advanced LIGO Miller J, Barsotti L, Vitale S et al Phys. Rev. 0556-2821 91 D 062005 2015 

  4. [4] Harms J 2015 Terrestrial gravity fluctuations Living Rev. Relativ. 18 7 10.1007/lrr-2015-3 Terrestrial gravity fluctuations Harms J Living Rev. Relativ. 1433-8351 18 2015 7 

  5. [5] Cella G 2000 Off-line subtraction of seismic newtonian noise Recent Developments in General Relativity (Berlin: Springer) pp 495–503 10.1007/978-88-470-2113-6_44 Off-line subtraction of seismic newtonian noise Cella G Recent Developments in General Relativity 2000 495 503 

  6. [6] Driggers J C, Harms J and Adhikari R X 2012 Subtraction of newtonian noise using optimized sensor arrays Phys. Rev. D 86 102001 10.1103/physrevd.86.102001 Subtraction of newtonian noise using optimized sensor arrays Driggers J C, Harms J and Adhikari R X Phys. Rev. 0556-2821 86 D 102001 2012 

  7. [7] Madau P and Dickinson M 2014 Cosmic star-formation history Annu. Rev. Astron. Astrophys. 52 415–86 10.1146/annurev-astro-081811-125615 Cosmic star-formation history Madau P and Dickinson M Annu. Rev. Astron. Astrophys. 52 2014 415 486 

  8. [8] Aasi J, Abbott B P, Abbott R et al 2015 Advanced LIGO Class. Quantum Grav. 32 074001 10.1088%2F0264-9381%2F32%2F7%2F074001 Advanced LIGO Aasi J, Abbott B P, Abbott R et al Class. Quantum Grav. 0264-9381 32 7 074001 2015 

  9. [9] Acernese F, Agathos M, Agatsuma K et al 2014 Advanced virgo: a second-generation interferometric gravitational wave detector Class. Quantum Grav. 32 024001 10.1088%2F0264-9381%2F32%2F2%2F024001 Advanced virgo: a second-generation interferometric gravitational wave detector Acernese F, Agathos M, Agatsuma K et al Class. Quantum Grav. 0264-9381 32 024001 2014 

  10. [10] Hirose E, Bajuk D, Billingsley G et al 2014 Sapphire mirror for the kagra gravitational wave detector Phys. Rev. D 89 062003 10.1103/physrevd.89.062003 Sapphire mirror for the kagra gravitational wave detector Hirose E, Bajuk D, Billingsley G et al Phys. Rev. 0556-2821 89 D 062003 2014 

  11. [11] Hild S, Chelkowski S, Freise A et al 2009 A xylophone configuration for a third-generation gravitational wave detector Class. Quantum Grav. 27 015003 10.1088/0264-9381/27/1/015003 A xylophone configuration for a third-generation gravitational wave detector Hild S, Chelkowski S, Freise A et al Class. Quantum Grav. 0264-9381 27 015003 2009 

  12. [12] Callen H B and Welton T A 1951 Irreversibility and generalized noise Phys. Rev. 83 34–40 10.1103/physrev.83.34 Irreversibility and generalized noise Callen H B and Welton T A Phys. Rev. 83 1951 34 40 

  13. [13] Kubo R 1966 The fluctuation–dissipation theorem Rep. Prog. Phys. 29 255–84 10.1088/0034-4885/29/1/306 The fluctuation–dissipation theorem Kubo R Rep. Prog. Phys. 0034-4885 29 1 306 1966 255 284 

  14. [14] Bernard W and Callen H B 1959 Irreversible thermodynamics of nonlinear processes and noise in driven systems Rev. Mod. Phys. 31 1017–44 10.1103/revmodphys.31.1017 Irreversible thermodynamics of nonlinear processes and noise in driven systems Bernard W and Callen H B Rev. Mod. Phys. 0034-6861 31 1959 1017 1044 

  15. [15] Schroeter A, Nawrodt R, Schnabel R et al 2007 On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz (arXiv:0709.4359) On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz Schroeter A, Nawrodt R, Schnabel R et al 2007 

  16. [16] Numata K and Yamamoto K 2012 Cryogenics Optical Coatings and Thermal Noise in Precision Measurement ed G Harry, T P Bodiya and R DeSalvo (Cambridge: Cambridge University Press) pp 108–28 Cryogenics Numata K and Yamamoto K ed Harry G, Bodiya T P and DeSalvo R Optical Coatings and Thermal Noise in Precision Measurement 2012 108 128 

  17. [17] Braginsky V B, Gorodetsky M L and Vyatchanin S P 1999 Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae Phys. Lett. A 264 1–10 10.1016/s0375-9601(99)00785-9 Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae Braginsky V B, Gorodetsky M L and Vyatchanin S P Phys. Lett. 0375-9601 264 A 1999 1 10 

  18. [18] Liu Y T and Thorne K S 2000 Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses Phys. Rev. D 62 122002 10.1103/physrevd.62.122002 Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses Liu Y T and Thorne K S Phys. Rev. 0556-2821 62 D 122002 2000 

  19. [19] Kim D S, Hellman O, Herriman J et al 2018 Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon Proc. Natl Acad. Sci. 115 1992–7 10.1073/pnas.1707745115 Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon Kim D S, Hellman O, Herriman J et al Proc. Natl Acad. Sci. 0027-8424 115 2018 1992 1997 

  20. [20] Somiya K 2012 Detector configuration of KAGRA–the japanese cryogenic gravitational-wave detector Class. Quantum Grav. 29 124007 10.1088/0264-9381/29/12/124007 Detector configuration of KAGRA–the japanese cryogenic gravitational-wave detector Somiya K Class. Quantum Grav. 0264-9381 29 12 124007 2012 

  21. [21] Lin W and Huff H 2008 Silicon materials Handbook of Semiconductor Manufacturing Technology ed R Doering and Y Nishi (Boca Raton: CRC Press) ch 3 Silicon materials Lin W and Huff H ed Doering R and Nishi Y Handbook of Semiconductor Manufacturing Technology 2008 

  22. [22] Michel J and Kimerling L 1994 Electrical properties of oxygen in silicon Oxygen in Silicon (Semiconductors and Semimetals vol 42) ed R Willardson, A C Beer and E R Weber (Amsterdam: Elsevier) pp 251–87 ch 7 Electrical properties of oxygen in silicon Michel J and Kimerling L ed Willardson R, Beer A C and Weber E R Oxygen in Silicon 1994 251 287 

  23. [23] Götz W, Pensl G, Zulehner W, Newman R C and McQuaid S A 1998 Thermal donor formation and annihilation at temperatures above 500°C in czochralski-grown si J. Appl. Phys. 84 3561–8 10.1063/1.368586 Thermal donor formation and annihilation at temperatures above 500°C in czochralski-grown si Götz W, Pensl G, Zulehner W, Newman R C and McQuaid S A J. Appl. Phys. 84 1998 3561 3568 

  24. [24] Kissinger G 2015 Oxygen precipitation in silicon Defects and Impurities in Silicon Materials (Japan: Springer) pp 273–341 10.1007/978-4-431-55800-2_6 Oxygen precipitation in silicon Kissinger G Defects and Impurities in Silicon Materials 0075-8450 916 2015 273 341 

  25. [25] Schinke C, Christian Peest P, Schmidt J et al 2015 Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon AIP Adv. 5 067168 10.1063/1.4923379 Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon Schinke C, Christian Peest P, Schmidt J et al AIP Adv. 5 067168 2015 

  26. [26] Bristow A D, Rotenberg N and Driel H M v 2007 Two-photon absorption and kerr coefficients of silicon for 850–2200 nm Appl. Phys. Lett. 90 191104 10.1063/1.2737359 Two-photon absorption and kerr coefficients of silicon for 850–2200 nm Bristow A D, Rotenberg N and Driel H M v Appl. Phys. Lett. 90 191104 2007 

  27. [27] Soref R and Bennett B 1987 Electrooptical effects in silicon IEEE J. Quantum Electron. 23 123–9 10.1109/jqe.1987.1073206 Electrooptical effects in silicon Soref R and Bennett B IEEE J. Quantum Electron. 0018-9197 23 1987 123 129 

  28. [28] Degallaix J, Flaminio R, Forest D et al 2013 Bulk optical absorption of high resistivity silicon at 1550 nm Opt. Lett. 38 2047–9 10.1364/ol.38.002047 Bulk optical absorption of high resistivity silicon at 1550 nm Degallaix J, Flaminio R, Forest D et al Opt. Lett. 38 2013 2047 2049 

  29. [29] Spitzer W and Fan H Y 1957 Infrared absorption in n-type silicon Phys. Rev. 108 268–71 10.1103/physrev.108.268 Infrared absorption in n-type silicon Spitzer W and Fan H Y Phys. Rev. 108 1957 268 271 

  30. [30] Braginsky V B and Vyatchanin S P 2004 Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae Phys. Lett. A 324 345–60 10.1016/j.physleta.2004.02.066 Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae Braginsky V B and Vyatchanin S P Phys. Lett. 0375-9601 324 A 2004 345 360 

  31. [31] Bruns F, Vyachanin S P, Dickmann J et al 2020 Thermal charge carrier driven noise in transmissive semiconductor optics (arXiv:2003.05345) Thermal charge carrier driven noise in transmissive semiconductor optics Bruns F, Vyachanin S P, Dickmann J et al 2020 

  32. [32] Billingsley G, Harry G and Kells W 2015 Core optics components design requirements document LIGO Technical Report https://dcc.ligo.org/LIGO-T000127/public Core optics components design requirements document Billingsley G, Harry G and Kells W 2015 

  33. [33] Vanhellemont J, Nakamura K, Kamiyama E and Sueoka K 2015 Control of intrinsic point defects in single-crystal Si and Ge growth from a melt Defects and Impurities in Silicon Materials (Japan: Springer) pp 181–240 10.1007/978-4-431-55800-2_4 Control of intrinsic point defects in single-crystal Si and Ge growth from a melt Vanhellemont J, Nakamura K, Kamiyama E and Sueoka K Defects and Impurities in Silicon Materials 0075-8450 916 2015 181 240 

  34. [34] Tornasi Z 2017 Optical properties of silicon for cryogenic interferferometric gravitational wave detectors LIGO Technical Report (https://dcc.ligo.org/LIGO-G1700998/public) Optical properties of silicon for cryogenic interferferometric gravitational wave detectors Tornasi Z 2017 

  35. [35] Brooks A F, Abbott B, Arain M A et al 2016 Overview of advanced ligo adaptive optics Appl. Opt. 55 8256–65 10.1364/ao.55.008256 Overview of advanced ligo adaptive optics Brooks A F, Abbott B, Arain M A et al Appl. Opt. 0003-6935 55 2016 8256 8265 

  36. [36] Winkler W, Danzmann K, Rüdiger A and Schilling R 1991 Heating by optical absorption and the performance of interferometric gravitational-wave detectors Phys. Rev. A 44 7022–36 10.1103/physreva.44.7022 Heating by optical absorption and the performance of interferometric gravitational-wave detectors Winkler W, Danzmann K, Rüdiger A and Schilling R Phys. Rev. 44 A 1991 7022 7036 

  37. [37] Degallaix J, Komma J, Forest D et al 2014 Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the einstein telescope Class. Quantum Grav. 31 185010 10.1088/0264-9381/31/18/185010 Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the einstein telescope Degallaix J, Komma J, Forest D et al Class. Quantum Grav. 0264-9381 31 18 185010 2014 

  38. [38] Brooks A et al 2019 P1900287: Point Absorbers in Advanced LIGO LIGO Technical Report https://dcc.ligo.org/LIGO-P1900287/public P1900287: Point Absorbers in Advanced LIGO Brooks A et al 2019 

  39. [39] Reid S and Martin I 2016 Development of mirror coatings for gravitational wave detectors Coatings 6 61 10.3390/coatings6040061 Development of mirror coatings for gravitational wave detectors Reid S and Martin I Coatings 6 2016 61 

  40. [40] Granata M, Saracco E, Morgado N et al 2016 Mechanical loss in state-of-the-art amorphous optical coatings Phys. Rev. D 93 012007 10.1103/physrevd.93.012007 Mechanical loss in state-of-the-art amorphous optical coatings Granata M, Saracco E, Morgado N et al Phys. Rev. 0556-2821 93 D 012007 2016 

  41. [41] Pinard L, Michel C, Sassolas B et al 2017 Mirrors used in the ligo interferometers for first detection of gravitational waves Appl. Opt. 56 C11–5 10.1364/ao.56.000c11 Mirrors used in the ligo interferometers for first detection of gravitational waves Pinard L, Michel C, Sassolas B et al Appl. Opt. 0003-6935 56 2017 C11 C15 

  42. [42] Evans M, Ballmer S, Fejer M et al 2008 Thermo-optic noise in coated mirrors for high-precision optical measurements Phys. Rev. D 78 102003 10.1103/physrevd.78.102003 Thermo-optic noise in coated mirrors for high-precision optical measurements Evans M, Ballmer S, Fejer M et al Phys. Rev. 0556-2821 78 D 102003 2008 

  43. [43] Hong T, Yang H, Gustafson E K, Adhikari R X and Chen Y 2013 Brownian thermal noise in multilayer coated mirrors Phys. Rev. D 87 082001 10.1103/physrevd.87.082001 Brownian thermal noise in multilayer coated mirrors Hong T, Yang H, Gustafson E K, Adhikari R X and Chen Y Phys. Rev. 0556-2821 87 D 082001 2013 

  44. [44] Liu X, Queen D R, Metcalf T H, Karel J E and Hellman F 2014 Hydrogen-free amorphous silicon with no tunneling states Phys. Rev. Lett. 113 025503 10.1103/physrevlett.113.025503 Hydrogen-free amorphous silicon with no tunneling states Liu X, Queen D R, Metcalf T H, Karel J E and Hellman F Phys. Rev. Lett. 113 025503 2014 

  45. [45] Martin I W, Nawrodt R, Craig K et al 2014 Low temperature mechanical dissipation of an ion-beam sputtered silica film Class. Quantum Grav. 31 035019 10.1088/0264-9381/31/3/035019 Low temperature mechanical dissipation of an ion-beam sputtered silica film Martin I W, Nawrodt R, Craig K et al Class. Quantum Grav. 0264-9381 31 3 035019 2014 

  46. [46] Pohl R O, Liu X and Thompson E 2002 Low-temperature thermal conductivity and acoustic attenuation in amorphous solids Rev. Mod. Phys. 74 991–1013 10.1103/revmodphys.74.991 Low-temperature thermal conductivity and acoustic attenuation in amorphous solids Pohl R O, Liu X and Thompson E Rev. Mod. Phys. 0034-6861 74 2002 991 1013 

  47. [47] Birney R, Steinlechner J, Tornasi Z et al 2018 Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy Phys. Rev. Lett. 121 191101 10.1103/physrevlett.121.191101 Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy Birney R, Steinlechner J, Tornasi Z et al Phys. Rev. Lett. 121 191101 2018 

  48. [48] Cole G D, Zhang W, Bjork B J et al 2016 High-performance near- and mid-infrared crystalline coatings Optica 3 647–56 10.1364/optica.3.000647 High-performance near- and mid-infrared crystalline coatings Cole G D, Zhang W, Bjork B J et al Optica 3 2016 647 656 

  49. [49] Cumming A, Lin A, Markosyan A et al 2013 Epitaxial integration of monocrystalline III–V coatings on silicon for thermal noise reduction Optical Interference Coatings MA.2 (https://doi.org/10.1364/OIC.2013.MA.2) 10.1364/OIC.2013.MA.2 Epitaxial integration of monocrystalline III–V coatings on silicon for thermal noise reduction Cumming A, Lin A, Markosyan A et al Optical Interference Coatings 2013 

  50. [50] Chalermsongsak T, Hall E D, Cole G D et al 2016 Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As bragg mirrors Metrologia 53 860–8 10.1088/0026-1394/53/2/860 Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As bragg mirrors Chalermsongsak T, Hall E D, Cole G D et al Metrologia 0026-1394 53 2 860 2016 860 868 

  51. [51] Yablonovitch E, Hwang D M, Gmitter T J, Florez L T and Harbison J P 1990 Van der waals bonding of gaas epitaxial liftoff films onto arbitrary substrates Appl. Phys. Lett. 56 2419 10.1063/1.102896 Van der waals bonding of gaas epitaxial liftoff films onto arbitrary substrates Yablonovitch E, Hwang D M, Gmitter T J, Florez L T and Harbison J P Appl. Phys. Lett. 56 1990 2419 

  52. [52] Steinlechner J, Martin I W, Bell A S et al 2018 Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing Phys. Rev. Lett. 120 263602 10.1103/physrevlett.120.263602 Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing Steinlechner J, Martin I W, Bell A S et al Phys. Rev. Lett. 120 263602 2018 

  53. [53] Birney R, Cumming A V, Campsie P et al 2017 Coatings and surface treatments for enhanced performance suspensions for future gravitational wave detectors Class. Quantum Grav. 34 235012 10.1088/1361-6382/aa9354 Coatings and surface treatments for enhanced performance suspensions for future gravitational wave detectors Birney R, Cumming A V, Campsie P et al Class. Quantum Grav. 0264-9381 34 23 235012 2017 

  54. [54] Mehmet M, Ast S, Eberle T et al 2011 Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB Opt. Express 19 25763–72 10.1364/oe.19.025763 Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB Mehmet M, Ast S, Eberle T et al Opt. Express 1094-4087 19 2011 25763 25772 

  55. [55] Adhikari R X 2019 Integrated detector commissioning Advanced Interferometric Gravitational-Wave Detectors (Essentials of Gravitational-Wave Detectors vol 1) ed D Reitze et al (Singapore: World Scientific) pp 685–704 10.1142/9789813146082_0025 Integrated detector commissioning Adhikari R X ed Reitze D et al Advanced Interferometric Gravitational-Wave Detectors 2424-8223 2019 685 704 

  56. [56] Zucker M E and Whitcomb S E 1996 Measurement of optical path fluctuations due to residual gas in the ligo 40 meter interferometer Proc. of the 7th Marcel Grossman Meeting on General Relativity (Hackensack, N.J.: World Scientific) Measurement of optical path fluctuations due to residual gas in the ligo 40 meter interferometer Zucker M E and Whitcomb S E Proc. of the 7th Marcel Grossman Meeting on General Relativity 1996 

  57. [57] Takahashi R, Saito Y, Fukushima M et al 2002 Direct measurement of residual gas effect on the sensitivity in tama300 J. Vac. Sci. Technol. A 20 1237 10.1116/1.1479360 Direct measurement of residual gas effect on the sensitivity in tama300 Takahashi R, Saito Y, Fukushima M et al J. Vac. Sci. Technol. 0734-2101 20 A 2002 1237 

  58. [58] Tropf W, Thomas M and Harri T 1995 Properties of crystals and glasses Handbook of Optics: Devices, Measurements, and Properties vol 2 2nd edn (Piscataway, NJ: IEEE) ch 33 Properties of crystals and glasses Tropf W, Thomas M and Harri T Handbook of Optics: Devices, Measurements, and Properties 2 1995 

  59. [59] Kitamura R, Pilon L and Jonasz M 2007 Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature Appl. Opt. 46 8118–33 10.1364/ao.46.008118 Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature Kitamura R, Pilon L and Jonasz M Appl. Opt. 0003-6935 46 2007 8118 8133 

  60. [60] Thomas M E 2006 Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water (Johns Hopkins University/Applied Physics Laboratory series in science and engineering) (Oxford: Oxford University Press) Thomas M E Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water 2006 

  61. [61] Lines M and Klocek P 1998 Optical transmission theory Infrared Fiber Optics ed I Aggarwal and J Sanghera (Boca, FL: CRC Press) pp 1–30 ch 1 Optical transmission theory Lines M and Klocek P ed Aggarwal I and Sanghera J Infrared Fiber Optics 1998 1 30 

  62. [62] Dragic P, Cavillon M and Ballato J 2017 On the thermo-optic coefficient of P2O5 in SiO2 Opt. Mater. Express 7 3654–61 10.1364/ome.7.003654 On the thermo-optic coefficient of P2O5 in SiO2 Dragic P, Cavillon M and Ballato J Opt. Mater. Express 7 2017 3654 3661 

  63. [63] Sidles J A and Sigg D 2006 Optical torques in suspended Fabry Perot interferometers Phys. Lett. A 354 167–72 10.1016/j.physleta.2006.01.051 Optical torques in suspended Fabry Perot interferometers Sidles J A and Sigg D Phys. Lett. 0375-9601 354 A 2006 167 172 

  64. [64] Hirose E, Kawabe K, Sigg D, Adhikari R and Saulson P R 2010 Angular instability due to radiation pressure in the LIGO gravitational-wave detector Appl. Opt. 49 3474–84 10.1364/ao.49.003474 Angular instability due to radiation pressure in the LIGO gravitational-wave detector Hirose E, Kawabe K, Sigg D, Adhikari R and Saulson P R Appl. Opt. 0003-6935 49 2010 3474 3484 

  65. [65] Dooley K L, Barsotti L, Adhikari R X et al 2013 Angular control of optical cavities in a radiation-pressure-dominated regime: the enhanced LIGO case J. Opt. Soc. Am. A 30 2618–26 10.1364/josaa.30.002618 Angular control of optical cavities in a radiation-pressure-dominated regime: the enhanced LIGO case Dooley K L, Barsotti L, Adhikari R X et al J. Opt. Soc. Am. 0740-3232 30 A 2013 2618 2626 

  66. [66] Evans M, Gras S, Fritschel P et al 2015 Observation of parametric instability in Advanced LIGO Phys. Rev. Lett. 114 161102 10.1103/physrevlett.114.161102 Observation of parametric instability in Advanced LIGO Evans M, Gras S, Fritschel P et al Phys. Rev. Lett. 114 161102 2015 

  67. [67] Gras S, Fritschel P, Barsotti L and Evans M 2015 Resonant dampers for parametric instabilities in gravitational wave detectors Phys. Rev. D 92 082001 10.1103/physrevd.92.082001 Resonant dampers for parametric instabilities in gravitational wave detectors Gras S, Fritschel P, Barsotti L and Evans M Phys. Rev. 0556-2821 92 D 082001 2015 

  68. [68] Knyazev E, Danilishin S, Hild S and Khalili F 2018 Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement Phys. Lett. A 382 2219–25 Special Issue in memory of Professor V B Braginsky 10.1016/j.physleta.2017.10.009 Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement Knyazev E, Danilishin S, Hild S and Khalili F Phys. Lett. 0375-9601 382 A 2018 2219 2225 

  69. [69] Grote H, Danzmann K, Dooley K L et al 2013 First long-term application of squeezed states of light in a gravitational-wave observatory Phys. Rev. Lett. 110 181101 10.1103/physrevlett.110.181101 First long-term application of squeezed states of light in a gravitational-wave observatory Grote H, Danzmann K, Dooley K L et al Phys. Rev. Lett. 110 181101 2013 

  70. [70] Abadie J, Abbott B P et al and T L S Collaboration 2011 A gravitational wave observatory operating beyond the quantum shot-noise limit Nat. Phys. 7 962 10.1038/nphys2083 A gravitational wave observatory operating beyond the quantum shot-noise limit Abadie J, Abbott B P et al and T L S Collaboration Nat. Phys. 7 2011 962 

  71. [71] Aasi J, Abadie J, Abbott B P et al 2013 Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Nat. Photon. 7 613–9 10.1038/nphoton.2013.17 Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Aasi J, Abadie J, Abbott B P et al Nat. Photon. 7 2013 613 619 

  72. [72] Miao H, Yang H, Adhikari R X and Chen Y 2014 Quantum limits of interferometer topologies for gravitational radiation detection Class. Quantum Grav. 31 165010 10.1088/0264-9381/31/16/165010 Quantum limits of interferometer topologies for gravitational radiation detection Miao H, Yang H, Adhikari R X and Chen Y Class. Quantum Grav. 0264-9381 31 16 165010 2014 

  73. [73] Unruh W G 1983 Quantum noise in the interferometer detector Quantum Optics, Experimental Gravity, and Measurement Theory (Berlin: Springer) pp 647–60 10.1007/978-1-4613-3712-6_28 Quantum noise in the interferometer detector Unruh W G Quantum Optics, Experimental Gravity, and Measurement Theory 1983 647 660 

  74. [74] Kimble H J, Levin Y, Matsko A B, Thorne K S and Vyatchanin S P 2001 Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics Phys. Rev. D 65 022002 10.1103/physrevd.65.022002 Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics Kimble H J, Levin Y, Matsko A B, Thorne K S and Vyatchanin S P Phys. Rev. 0556-2821 65 D 022002 2001 

  75. [75] Oelker E, Isogai T, Miller J et al 2016 Audio-band frequency-dependent squeezing for gravitational-wave detectors Phys. Rev. Lett. 116 041102 10.1103/physrevlett.116.041102 Audio-band frequency-dependent squeezing for gravitational-wave detectors Oelker E, Isogai T, Miller J et al Phys. Rev. Lett. 116 041102 2016 

  76. [76] Vahlbruch H, Chelkowski S, Hage B et al 2006 Coherent control of vacuum squeezing in the gravitational-wave detection band Phys. Rev. Lett. 97 011101 10.1103/physrevlett.97.011101 Coherent control of vacuum squeezing in the gravitational-wave detection band Vahlbruch H, Chelkowski S, Hage B et al Phys. Rev. Lett. 97 011101 2006 

  77. [77] Mansell G L, McRae T G, Altin P A et al 2018 Observation of squeezed light in the 2μm region Phys. Rev. Lett. 120 203603 10.1103/physrevlett.120.203603 Observation of squeezed light in the 2μm region Mansell G L, McRae T G, Altin P A et al Phys. Rev. Lett. 120 203603 2018 

  78. [78] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Observation of squeezed states generated by four-wave mixing in an optical cavity Phys. Rev. Lett. 55 2409–12 10.1103/physrevlett.55.2409 Observation of squeezed states generated by four-wave mixing in an optical cavity Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F Phys. Rev. Lett. 0031-9007 55 1985 2409 2412 

  79. [79] Wu L-A, Kimble H J, Hall J L and Wu H 1986 Generation of squeezed states by parametric down conversion Phys. Rev. Lett. 57 2520–3 10.1103/physrevlett.57.2520 Generation of squeezed states by parametric down conversion Wu L-A, Kimble H J, Hall J L and Wu H Phys. Rev. Lett. 0031-9007 57 1986 2520 2523 

  80. [80] Vahlbruch H, Mehmet M, Chelkowski S et al 2008 Observation of squeezed light with 10-dB quantum-noise reduction Phys. Rev. Lett. 100 033602 10.1103/physrevlett.100.033602 Observation of squeezed light with 10-dB quantum-noise reduction Vahlbruch H, Mehmet M, Chelkowski S et al Phys. Rev. Lett. 100 033602 2008 

  81. [81] Harms J, Chen Y, Chelkowski S et al 2003 Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors Phys. Rev. D 68 042001 10.1103/physrevd.68.042001 Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors Harms J, Chen Y, Chelkowski S et al Phys. Rev. 0556-2821 68 D 042001 2003 

  82. [82] Khalili F Y 2010 Optimal configurations of filter cavity in future gravitational-wave detectors Phys. Rev. D 81 122002 10.1103/physrevd.81.122002 Optimal configurations of filter cavity in future gravitational-wave detectors Khalili F Y Phys. Rev. 0556-2821 81 D 122002 2010 

  83. [83] Evans M, Barsotti L, Kwee P, Harms J and Miao H 2013 Realistic filter cavities for advanced gravitational wave detectors Phys. Rev. D 88 022002 10.1103/physrevd.88.022002 Realistic filter cavities for advanced gravitational wave detectors Evans M, Barsotti L, Kwee P, Harms J and Miao H Phys. Rev. 0556-2821 88 D 022002 2013 

  84. [84] Isogai T, Miller J, Kwee P, Barsotti L and Evans M 2013 Loss in long-storage-time optical cavities Opt. Express 21 30114–25 10.1364/oe.21.030114 Loss in long-storage-time optical cavities Isogai T, Miller J, Kwee P, Barsotti L and Evans M Opt. Express 1094-4087 21 2013 30114 30125 

  85. [85] Kwee P, Miller J, Isogai T, Barsotti L and Evans M 2014 Decoherence and degradation of squeezed states in quantum filter cavities Phys. Rev. D 90 062006 10.1103/physrevd.90.062006 Decoherence and degradation of squeezed states in quantum filter cavities Kwee P, Miller J, Isogai T, Barsotti L and Evans M Phys. Rev. 0556-2821 90 D 062006 2014 

  86. [86] Stefszky M S, Mow-Lowry C M, Y Chua S S et al 2012 Balanced homodyne detection of optical quantum states at audio-band frequencies and below Class. Quantum Grav. 29 145015 10.1088/0264-9381/29/14/145015 Balanced homodyne detection of optical quantum states at audio-band frequencies and below Stefszky M S, Mow-Lowry C M, Y Chua S S et al Class. Quantum Grav. 0264-9381 29 14 145015 2012 

  87. [87] Barsotti L, Harms J and Schnabel R 2018 Squeezed vacuum states of light for gravitational wave detectors Rep. Prog. Phys. 82 016905 10.1088/1361-6633/aab906 Squeezed vacuum states of light for gravitational wave detectors Barsotti L, Harms J and Schnabel R Rep. Prog. Phys. 82 016905 2018 

  88. [88] Dooley K, Leong J, Adams T et al 2016 GEO 600 and the GEO-HF upgrade program: successes and challenges Class. Quantum Grav. 33 075009 10.1088/0264-9381/33/7/075009 GEO 600 and the GEO-HF upgrade program: successes and challenges Dooley K, Leong J, Adams T et al Class. Quantum Grav. 0264-9381 33 7 075009 2016 

  89. [89] LASER COMPONENTS GmbH (ed) 2016 InGaAs PIN Photodiodes Manufacturer's Product Note (Olching: Laser Components, Inc) 3028827 V. 4, (http://web.archive.org/web/20170618063335/https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lc/kataloge/ir_components.pdf) Manufacturer's Product Note 3028827 

  90. [90] Teledyne Scientific and Imaging 2017 SWIR PV MCT detectors, 2.5 μm, high performance at room temp Internal Company Note (Thousand Oaks, CA: Teledyne Scientific and Imaging) (http://www.teledynejudson.com/news/Documents/2.5%20um%20SWIR%20PV%20MCT%20product%20chart.pdf) SWIR PV MCT detectors, 2.5 μm, high performance at room temp Teledyne Scientific and Imaging Internal Company Note 2017 

  91. [91] Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A 2014 New concepts in infrared photodetector designs Appl. Phys. Rev. 1 041102 10.1063/1.4896193 New concepts in infrared photodetector designs Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A Appl. Phys. Rev. 1 041102 2014 

  92. [92] Klipstein P, Klin O, Grossman S et al 2011 XBn barrier photodetectors based on InAsSb with high operating temperatures Opt. Eng., Bellingham 50 1–11 10.1117/1.3572149 XBn barrier photodetectors based on InAsSb with high operating temperatures Klipstein P, Klin O, Grossman S et al Opt. Eng., Bellingham 0091-3286 50 2011 1 11 

  93. [93] Ting D Z-Y, Soibel A, Hill C J et al 2011 Antimonide superlattice complementary barrier infrared detector (cbird) Infrared Phys. Technol. 54 267–72 10.1016/j.infrared.2010.12.027 Antimonide superlattice complementary barrier infrared detector (cbird) Ting D Z-Y, Soibel A, Hill C J et al Infrared Phys. Technol. 1350-4495 54 2011 267 272 

  94. [94] Steenbergen E H, Connelly B C, Metcalfe G D et al 2011 Significantly improved minority carrier lifetime observed in a long-wavelength infrared III–V type-II superlattice comprised of InAs/InAsSb Appl. Phys. Lett. 99 251110 10.1063/1.3671398 Significantly improved minority carrier lifetime observed in a long-wavelength infrared III–V type-II superlattice comprised of InAs/InAsSb Steenbergen E H, Connelly B C, Metcalfe G D et al Appl. Phys. Lett. 99 251110 2011 

  95. [95] Aston S M, Barton M A, Bell A S et al 2012 Update on quadruple suspension design for Advanced LIGO Class. Quantum Grav. 29 235004 10.1088/0264-9381/29/23/235004 Update on quadruple suspension design for Advanced LIGO Aston S M, Barton M A, Bell A S et al Class. Quantum Grav. 0264-9381 29 23 235004 2012 

  96. [96] Rowan S, Twyford S, Hough J, Gwo D-H and Route R 1998 Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica Phys. Lett. A 246 471–8 10.1016/s0375-9601(98)00533-7 Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica Rowan S, Twyford S, Hough J, Gwo D-H and Route R Phys. Lett. 0375-9601 246 A 1998 471 478 

  97. [97] Veggel A A v, Scott J, Skinner D A et al 2009 Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon Class. Quantum Grav. 26 175007 10.1088/0264-9381/26/17/175007 Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon Veggel A A v, Scott J, Skinner D A et al Class. Quantum Grav. 0264-9381 26 17 175007 2009 

  98. [98] Wen S, Mittleman R, Mason K et al 2014 Hydraulic external pre-isolator system for LIGO Class. Quantum Grav. 31 235001 10.1088/0264-9381/31/23/235001 Hydraulic external pre-isolator system for LIGO Wen S, Mittleman R, Mason K et al Class. Quantum Grav. 0264-9381 31 23 235001 2014 

  99. [99] Matichard F, Lantz B, Mittleman R et al 2015 Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance Class. Quantum Grav. 32 185003 10.1088/0264-9381/32/18/185003 Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance Matichard F, Lantz B, Mittleman R et al Class. Quantum Grav. 0264-9381 32 18 185003 2015 

  100. [100] Shapiro B, Madden-Fong D and Lantz B 2014 LIGO Voyager quad pendulum conceptual design optimization LIGO Technical Report https://dcc.ligo.org/LIGO-T1300786/public LIGO Voyager quad pendulum conceptual design optimization Shapiro B, Madden-Fong D and Lantz B 2014 

  101. [101] Anderson O L and Bömmel H E 1955 Ultrasonic absorption in fused silica at low temperatures and high frequencies J. Am. Ceram. Soc. 38 125–31 10.1111/j.1151-2916.1955.tb14914.x Ultrasonic absorption in fused silica at low temperatures and high frequencies Anderson O L and Bömmel H E J. Am. Ceram. Soc. 0002-7820 38 1955 125 131 

  102. [102] Fine M E, Van Duyne H and Kenney N T 2004 Low-temperature internal friction and elasticity effects in vitreous silica J. Appl. Phys. 25 402–5 10.1063/1.1721649 Low-temperature internal friction and elasticity effects in vitreous silica Fine M E, Van Duyne H and Kenney N T J. Appl. Phys. 25 2004 402 405 

  103. [103] Marx J W and Sivertsen J M 2004 Temperature dependence of the elastic moduli and internal friction of silica and glass J. Appl. Phys. 24 81–7 10.1063/1.1721138 Temperature dependence of the elastic moduli and internal friction of silica and glass Marx J W and Sivertsen J M J. Appl. Phys. 24 2004 81 87 

  104. [104] McSkimin H J 2004 Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica J. Appl. Phys. 24 988–97 10.1063/1.1721449 Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica McSkimin H J J. Appl. Phys. 24 2004 988 997 

  105. [105] Cumming A V, Cunningham L, Hammond G D et al 2014 Silicon mirror suspensions for gravitational wave detectors Class. Quantum Grav. 31 025017 10.1088/0264-9381/31/2/025017 Silicon mirror suspensions for gravitational wave detectors Cumming A V, Cunningham L, Hammond G D et al Class. Quantum Grav. 0264-9381 31 2 025017 2014 

  106. [106] Buchman S, Everitt F, Parkinson B et al 1996 Experimental techniques for gyroscope performance enhancement for the Gravity Probe B relativity mission Class. Quantum Grav. 13 A185–91 10.1088/0264-9381/13/11a/026 Experimental techniques for gyroscope performance enhancement for the Gravity Probe B relativity mission Buchman S, Everitt F, Parkinson B et al Class. Quantum Grav. 0264-9381 13 11A 026 1996 A185 A191 

  107. [107] Prokhorov L, Koptsov D, Matiushechkina M et al 2018 Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator Phys. Lett. A 382 2186–91 10.1016/j.physleta.2017.07.007 Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator Prokhorov L, Koptsov D, Matiushechkina M et al Phys. Lett. 0375-9601 382 A 2018 2186 2191 

  108. [108] Kumar R, Chen D, Hagiwara A et al 2016 Status of the cryogenic payload system for the KAGRA detector J. Phys.: Conf. Ser. 716 012017 10.1088/1742-6596/716/1/012017 Status of the cryogenic payload system for the KAGRA detector Kumar R, Chen D, Hagiwara A et al J. Phys.: Conf. Ser. 1742-6596 716 1 012017 2016 

  109. [109] Adhikari R X, Ajith P, Chen Y et al 2019 Astrophysical science metrics for next-generation gravitational-wave detectors Class. Quantum Grav. 36 245010 10.1088/1361-6382/ab3cff Astrophysical science metrics for next-generation gravitational-wave detectors Adhikari R X, Ajith P, Chen Y et al Class. Quantum Grav. 0264-9381 36 24 245010 2019 

  110. [110] Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 2 μm laser sources and their possible applications Frontiers in Guided Wave Optics and Optoelectronics ed B Pal (London: InTechOpen) pp 471–500 ch 21 10.5772/39538 2 μm laser sources and their possible applications Scholle K, Lamrini S, Koopmann P and Fuhrberg P ed Pal B Frontiers in Guided Wave Optics and Optoelectronics 2010 471 500 

  111. [111] Willke B, King P, Savage R and Fritschel P 2011 Pre-stabilized laser design requirements LIGO Technical Report https://dcc.ligo.org/LIGO-T050036/public Pre-stabilized laser design requirements Willke B, King P, Savage R and Fritschel P 2011 

  112. [112] Heurs M, Quetschke V M, Willke B, Danzmann K and Freitag I 2004 Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique Opt. Lett. 29 2148–50 10.1364/ol.29.002148 Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique Heurs M, Quetschke V M, Willke B, Danzmann K and Freitag I Opt. Lett. 29 2004 2148 2150 

  113. [113] Kwee P, Bogan C, Danzmann K et al 2012 Stabilized high-power laser system for the gravitational wave detector advanced LIGO Opt. Express 20 10617–34 10.1364/oe.20.010617 Stabilized high-power laser system for the gravitational wave detector advanced LIGO Kwee P, Bogan C, Danzmann K et al Opt. Express 1094-4087 20 2012 10617 10634 

  114. [114] Hall E 2016 Long-baseline laser interferometry for the detection of binary black-hole mergers Ph D Thesis (California Institute of Technology) Ph D Thesis Hall E 2016 

  115. [115] Sincore A, Bradford J, Cook J, Shah L and Richardson M 2017 High average power thulium-doped silica fiber lasers: Review of systems and concepts IEEE J. Sel. Top. Quantum Electron. 24 0901808 10.1109/JSTQE.2017.2775964 High average power thulium-doped silica fiber lasers: Review of systems and concepts Sincore A, Bradford J, Cook J, Shah L and Richardson M IEEE J. Sel. Top. Quantum Electron. 1077-260X 24 0901808 2017 

  116. [116] Hemming A, Simakov N, Haub J and Carter A 2014 A review of recent progress in holmium-doped silica fibre sources Opt. Fiber Technol. 20 621–30 10.1016/j.yofte.2014.08.010 A review of recent progress in holmium-doped silica fibre sources Hemming A, Simakov N, Haub J and Carter A Opt. Fiber Technol. 20 2014 621 630 

  117. [117] Hemming A, Simakov N, Haub J and Carter A 2015 Thulium and holmium doped fibre lasers for 2 micron applications Workshop on Specialty Optical Fibers and Their Applications WT1A.3 (https://doi.org/10.1364/WSOF.2015.WT1A.3) 10.1364/WSOF.2015.WT1A.3 Thulium and holmium doped fibre lasers for 2 micron applications Hemming A, Simakov N, Haub J and Carter A Workshop on Specialty Optical Fibers and Their Applications 2015 

  118. [118] Ganija M, Simakov N, Hemming A et al 2016 Efficient, low threshold, cryogenic Ho:YAG laser Opt. Express 24 11569–77 10.1364/oe.24.011569 Efficient, low threshold, cryogenic Ho:YAG laser Ganija M, Simakov N, Hemming A et al Opt. Express 1094-4087 24 2016 11569 11577 

  119. [119] Fu S, Shi W, Feng Y et al 2017 Review of recent progress on single-frequency fiber lasers [invited] J. Opt. Soc. Am. B 34 A49–62 10.1364/josab.34.000a49 Review of recent progress on single-frequency fiber lasers [invited] Fu S, Shi W, Feng Y et al J. Opt. Soc. Am. 0740-3224 34 B 2017 A49 A62 

  120. [120] Q-Peak Inc. 2018 Firebow CW10-500 Tm:Fiber CW Laser (Bedford, MA: Q-Peak Inc) Q-Peak Inc. Firebow CW10-500 Tm:Fiber CW Laser 2018 

  121. [121] Willke B, Brozek S, Danzmann K, Quetschke V and Gossler S 2000 Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source Opt. Lett. 25 1019–21 10.1364/ol.25.001019 Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source Willke B, Brozek S, Danzmann K, Quetschke V and Gossler S Opt. Lett. 25 2000 1019 1021 

  122. [122] Lin Z, Gao C, Gao M et al 2009 Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes Front. Optoelectron. China 2 410 10.1007/s12200-009-0067-z Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes Lin Z, Gao C, Gao M et al Front. Optoelectron. China 2 2009 410 

  123. [123] Yao B-Q, Duan X-M, Fang D et al 2008 7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser Opt. Lett. 33 2161–3 10.1364/ol.33.002161 7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser Yao B-Q, Duan X-M, Fang D et al Opt. Lett. 33 2008 2161 2163 

  124. [124] Johnson L F, Geusic J E and Van Uitert L G 1965 Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet Appl. Phys. Lett. 7 127–9 10.1063/1.1754339 Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet Johnson L F, Geusic J E and Van Uitert L G Appl. Phys. Lett. 7 1965 127 129 

  125. [125] Hemming A, Bennetts S, Simakov N et al 2013 High power operation of cladding pumped holmium-doped silica fibre lasers Opt. Express 21 4560–6 10.1364/oe.21.004560 High power operation of cladding pumped holmium-doped silica fibre lasers Hemming A, Bennetts S, Simakov N et al Opt. Express 1094-4087 21 2013 4560 4566 

  126. [126] Simakov N, Hemming A, Haub J and Carter A 2014 High power holmium fiber lasers The European Conf. on Optical Communication (ECOC) p Tu.3.4.1 High power holmium fiber lasers Simakov N, Hemming A, Haub J and Carter A The European Conf. on Optical Communication (ECOC) 2014 Tu.3.4.1 

  127. [127] Ganija M, Hemming A, Simakov N et al 2017 High power cryogenic Ho:YAG laser Opt. Express 25 31889–95 10.1364/oe.25.031889 High power cryogenic Ho:YAG laser Ganija M, Hemming A, Simakov N et al Opt. Express 1094-4087 25 2017 31889 31895 

  128. [128] Goodno G D, Book L D and Rothenberg J E 2009 Low-phase-noise, single-frequency, single-mode 608 w thulium fiber amplifier Opt. Lett. 34 1204–6 10.1364/ol.34.001204 Low-phase-noise, single-frequency, single-mode 608 w thulium fiber amplifier Goodno G D, Book L D and Rothenberg J E Opt. Lett. 34 2009 1204 1206 

  129. [129] Martynov D, Miao H, Yang H et al 2019 Exploring the sensitivity of gravitational wave detectors to neutron star physics Phys. Rev. D 99 102004 10.1103/physrevd.99.102004 Exploring the sensitivity of gravitational wave detectors to neutron star physics Martynov D, Miao H, Yang H et al Phys. Rev. 0556-2821 99 D 102004 2019 

  130. [130] Reitze D et al 2019 Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO (arXiv:1907.04833) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO Reitze D et al 2019 

  131. [131] Shapiro B, Adhikari R X, Aguiar O et al 2017 Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories Cryogenics 81 83–92 10.1016/j.cryogenics.2016.12.004 Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories Shapiro B, Adhikari R X, Aguiar O et al Cryogenics 81 2017 83 92 

  132. [132] Sakakibara Y, Kimura N, Akutsu T, Suzuki T and Kuroda K 2015 Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors Class. Quantum Grav. 32 155011 10.1088/0264-9381/32/15/155011 Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors Sakakibara Y, Kimura N, Akutsu T, Suzuki T and Kuroda K Class. Quantum Grav. 0264-9381 32 15 155011 2015 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로