최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Classical and quantum gravity, v.37 no.16, 2020년, pp.165003 -
Adhikari, R X (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) , Arai, K (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) , Brooks, A F (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) , Wipf, C (LIGO, California Institute of Technology, Pasadena, CA 91125, United States of America) , Aguiar, O (Instituto Nacional de Pesquisas Espaciais, 12227-010 Sã) , Altin, P (o José) , Barr, B (dos Campos, Sã) , Barsotti, L (o Paulo, Brazil) , Bassiri, R (OzGrav, ANU Centre for Gravitational Astrophysics, Research Schools of Physics, and Astronomy and Astrophysics, The Australian National University, Canberra, 2601, Australia) , Bell, A (SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom) , Billingsley, G (LIGO, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America) , Birney, R (Stanford University, Stanford, CA 94305, United States of America) , Blair, D (SUPA, University of Glasgow, Glasgow G12 8QQ, United Kingdom) , Bonilla, E (LIGO, California Institute of Technology, Pasadena, CA 91125, Unit) , Briggs, J , Brown, D D , Byer, R , Cao, H , Constancio, M , Cooper, S , Corbitt, T , Coyne, D , Cumming, A , Daw, E , deRosa, R , Eddolls, G , Eichholz, J , Evans, M , Fejer, M , Ferreira, E C , Freise, A , Frolov, V V , Gras, S , Green, A , Grote, H , Gustafson, E , Hall, E D , Hammond, G , Harms, J , Harry, G , Haughian, K , Heinert, D , Heintze, M , Hellman, F , Hennig, J , Hennig, M , Hild, S , Hough, J , Johnson, W , Kamai, B , Kapasi, D , Komori, K , Koptsov, D , Korobko, M , Korth, W Z , Kuns, K , Lantz, B , Leavey, S , Magana-Sandoval, F , Mansell, G , Markosyan, A , Markowitz, A , Martin, I , Martin, R , Martynov, D , McClelland, D E , McGhee, G , McRae, T , Mills, J , Mitrofanov, V , Molina-Ruiz, M , Mow-Lowry, C , Munch, J , Murray, P , Ng, S , Okada, M A , Ottaway, D J , Prokhorov, L , Quetschke, V , Rei
The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitati...
[1] Abbott B P, Abbott R, Abbott T D et al 2016 Observation of gravitational waves from a binary black hole merger Phys. Rev. Lett. 116 061102 10.1103/PhysRevLett.116.061102 Observation of gravitational waves from a binary black hole merger Abbott B P, Abbott R, Abbott T D et al Phys. Rev. Lett. 116 061102 2016
[2] Abbott B P, Abbott R, Abbott T D et al 2017 Multi-messenger observations of a binary neutron star merger Astrophys. J. Lett. 848 L12 10.3847%2F2041-8213%2Faa91c9 Multi-messenger observations of a binary neutron star merger Abbott B P, Abbott R, Abbott T D et al Astrophys. J. Lett. 848 2017 L12
[3] Miller J, Barsotti L, Vitale S et al 2015 Prospects for doubling the range of Advanced LIGO Phys. Rev. D 91 062005 10.1103/physrevd.91.062005 Prospects for doubling the range of Advanced LIGO Miller J, Barsotti L, Vitale S et al Phys. Rev. 0556-2821 91 D 062005 2015
[4] Harms J 2015 Terrestrial gravity fluctuations Living Rev. Relativ. 18 7 10.1007/lrr-2015-3 Terrestrial gravity fluctuations Harms J Living Rev. Relativ. 1433-8351 18 2015 7
[6] Driggers J C, Harms J and Adhikari R X 2012 Subtraction of newtonian noise using optimized sensor arrays Phys. Rev. D 86 102001 10.1103/physrevd.86.102001 Subtraction of newtonian noise using optimized sensor arrays Driggers J C, Harms J and Adhikari R X Phys. Rev. 0556-2821 86 D 102001 2012
[7] Madau P and Dickinson M 2014 Cosmic star-formation history Annu. Rev. Astron. Astrophys. 52 415–86 10.1146/annurev-astro-081811-125615 Cosmic star-formation history Madau P and Dickinson M Annu. Rev. Astron. Astrophys. 52 2014 415 486
[8] Aasi J, Abbott B P, Abbott R et al 2015 Advanced LIGO Class. Quantum Grav. 32 074001 10.1088%2F0264-9381%2F32%2F7%2F074001 Advanced LIGO Aasi J, Abbott B P, Abbott R et al Class. Quantum Grav. 0264-9381 32 7 074001 2015
[9] Acernese F, Agathos M, Agatsuma K et al 2014 Advanced virgo: a second-generation interferometric gravitational wave detector Class. Quantum Grav. 32 024001 10.1088%2F0264-9381%2F32%2F2%2F024001 Advanced virgo: a second-generation interferometric gravitational wave detector Acernese F, Agathos M, Agatsuma K et al Class. Quantum Grav. 0264-9381 32 024001 2014
[10] Hirose E, Bajuk D, Billingsley G et al 2014 Sapphire mirror for the kagra gravitational wave detector Phys. Rev. D 89 062003 10.1103/physrevd.89.062003 Sapphire mirror for the kagra gravitational wave detector Hirose E, Bajuk D, Billingsley G et al Phys. Rev. 0556-2821 89 D 062003 2014
[11] Hild S, Chelkowski S, Freise A et al 2009 A xylophone configuration for a third-generation gravitational wave detector Class. Quantum Grav. 27 015003 10.1088/0264-9381/27/1/015003 A xylophone configuration for a third-generation gravitational wave detector Hild S, Chelkowski S, Freise A et al Class. Quantum Grav. 0264-9381 27 015003 2009
[12] Callen H B and Welton T A 1951 Irreversibility and generalized noise Phys. Rev. 83 34–40 10.1103/physrev.83.34 Irreversibility and generalized noise Callen H B and Welton T A Phys. Rev. 83 1951 34 40
[13] Kubo R 1966 The fluctuation–dissipation theorem Rep. Prog. Phys. 29 255–84 10.1088/0034-4885/29/1/306 The fluctuation–dissipation theorem Kubo R Rep. Prog. Phys. 0034-4885 29 1 306 1966 255 284
[14] Bernard W and Callen H B 1959 Irreversible thermodynamics of nonlinear processes and noise in driven systems Rev. Mod. Phys. 31 1017–44 10.1103/revmodphys.31.1017 Irreversible thermodynamics of nonlinear processes and noise in driven systems Bernard W and Callen H B Rev. Mod. Phys. 0034-6861 31 1959 1017 1044
[15] Schroeter A, Nawrodt R, Schnabel R et al 2007 On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz (arXiv:0709.4359) On the mechanical quality factors of cryogenic test masses from fused silica and crystalline quartz Schroeter A, Nawrodt R, Schnabel R et al 2007
[16] Numata K and Yamamoto K 2012 Cryogenics Optical Coatings and Thermal Noise in Precision Measurement ed G Harry, T P Bodiya and R DeSalvo (Cambridge: Cambridge University Press) pp 108–28 Cryogenics Numata K and Yamamoto K ed Harry G, Bodiya T P and DeSalvo R Optical Coatings and Thermal Noise in Precision Measurement 2012 108 128
[17] Braginsky V B, Gorodetsky M L and Vyatchanin S P 1999 Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae Phys. Lett. A 264 1–10 10.1016/s0375-9601(99)00785-9 Thermodynamical fluctuations and photo-thermal shot noise in gravitational wave antennae Braginsky V B, Gorodetsky M L and Vyatchanin S P Phys. Lett. 0375-9601 264 A 1999 1 10
[18] Liu Y T and Thorne K S 2000 Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses Phys. Rev. D 62 122002 10.1103/physrevd.62.122002 Thermoelastic noise and homogeneous thermal noise in finite sized gravitational-wave test masses Liu Y T and Thorne K S Phys. Rev. 0556-2821 62 D 122002 2000
[19] Kim D S, Hellman O, Herriman J et al 2018 Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon Proc. Natl Acad. Sci. 115 1992–7 10.1073/pnas.1707745115 Nuclear quantum effect with pure anharmonicity and the anomalous thermal expansion of silicon Kim D S, Hellman O, Herriman J et al Proc. Natl Acad. Sci. 0027-8424 115 2018 1992 1997
[20] Somiya K 2012 Detector configuration of KAGRA–the japanese cryogenic gravitational-wave detector Class. Quantum Grav. 29 124007 10.1088/0264-9381/29/12/124007 Detector configuration of KAGRA–the japanese cryogenic gravitational-wave detector Somiya K Class. Quantum Grav. 0264-9381 29 12 124007 2012
[21] Lin W and Huff H 2008 Silicon materials Handbook of Semiconductor Manufacturing Technology ed R Doering and Y Nishi (Boca Raton: CRC Press) ch 3 Silicon materials Lin W and Huff H ed Doering R and Nishi Y Handbook of Semiconductor Manufacturing Technology 2008
[22] Michel J and Kimerling L 1994 Electrical properties of oxygen in silicon Oxygen in Silicon (Semiconductors and Semimetals vol 42) ed R Willardson, A C Beer and E R Weber (Amsterdam: Elsevier) pp 251–87 ch 7 Electrical properties of oxygen in silicon Michel J and Kimerling L ed Willardson R, Beer A C and Weber E R Oxygen in Silicon 1994 251 287
[23] Götz W, Pensl G, Zulehner W, Newman R C and McQuaid S A 1998 Thermal donor formation and annihilation at temperatures above 500°C in czochralski-grown si J. Appl. Phys. 84 3561–8 10.1063/1.368586 Thermal donor formation and annihilation at temperatures above 500°C in czochralski-grown si Götz W, Pensl G, Zulehner W, Newman R C and McQuaid S A J. Appl. Phys. 84 1998 3561 3568
[25] Schinke C, Christian Peest P, Schmidt J et al 2015 Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon AIP Adv. 5 067168 10.1063/1.4923379 Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon Schinke C, Christian Peest P, Schmidt J et al AIP Adv. 5 067168 2015
[26] Bristow A D, Rotenberg N and Driel H M v 2007 Two-photon absorption and kerr coefficients of silicon for 850–2200 nm Appl. Phys. Lett. 90 191104 10.1063/1.2737359 Two-photon absorption and kerr coefficients of silicon for 850–2200 nm Bristow A D, Rotenberg N and Driel H M v Appl. Phys. Lett. 90 191104 2007
[27] Soref R and Bennett B 1987 Electrooptical effects in silicon IEEE J. Quantum Electron. 23 123–9 10.1109/jqe.1987.1073206 Electrooptical effects in silicon Soref R and Bennett B IEEE J. Quantum Electron. 0018-9197 23 1987 123 129
[28] Degallaix J, Flaminio R, Forest D et al 2013 Bulk optical absorption of high resistivity silicon at 1550 nm Opt. Lett. 38 2047–9 10.1364/ol.38.002047 Bulk optical absorption of high resistivity silicon at 1550 nm Degallaix J, Flaminio R, Forest D et al Opt. Lett. 38 2013 2047 2049
[29] Spitzer W and Fan H Y 1957 Infrared absorption in n-type silicon Phys. Rev. 108 268–71 10.1103/physrev.108.268 Infrared absorption in n-type silicon Spitzer W and Fan H Y Phys. Rev. 108 1957 268 271
[30] Braginsky V B and Vyatchanin S P 2004 Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae Phys. Lett. A 324 345–60 10.1016/j.physleta.2004.02.066 Corner reflectors and quantum-non-demolition measurements in gravitational wave antennae Braginsky V B and Vyatchanin S P Phys. Lett. 0375-9601 324 A 2004 345 360
[31] Bruns F, Vyachanin S P, Dickmann J et al 2020 Thermal charge carrier driven noise in transmissive semiconductor optics (arXiv:2003.05345) Thermal charge carrier driven noise in transmissive semiconductor optics Bruns F, Vyachanin S P, Dickmann J et al 2020
[32] Billingsley G, Harry G and Kells W 2015 Core optics components design requirements document LIGO Technical Report https://dcc.ligo.org/LIGO-T000127/public Core optics components design requirements document Billingsley G, Harry G and Kells W 2015
[33] Vanhellemont J, Nakamura K, Kamiyama E and Sueoka K 2015 Control of intrinsic point defects in single-crystal Si and Ge growth from a melt Defects and Impurities in Silicon Materials (Japan: Springer) pp 181–240 10.1007/978-4-431-55800-2_4 Control of intrinsic point defects in single-crystal Si and Ge growth from a melt Vanhellemont J, Nakamura K, Kamiyama E and Sueoka K Defects and Impurities in Silicon Materials 0075-8450 916 2015 181 240
[34] Tornasi Z 2017 Optical properties of silicon for cryogenic interferferometric gravitational wave detectors LIGO Technical Report (https://dcc.ligo.org/LIGO-G1700998/public) Optical properties of silicon for cryogenic interferferometric gravitational wave detectors Tornasi Z 2017
[35] Brooks A F, Abbott B, Arain M A et al 2016 Overview of advanced ligo adaptive optics Appl. Opt. 55 8256–65 10.1364/ao.55.008256 Overview of advanced ligo adaptive optics Brooks A F, Abbott B, Arain M A et al Appl. Opt. 0003-6935 55 2016 8256 8265
[36] Winkler W, Danzmann K, Rüdiger A and Schilling R 1991 Heating by optical absorption and the performance of interferometric gravitational-wave detectors Phys. Rev. A 44 7022–36 10.1103/physreva.44.7022 Heating by optical absorption and the performance of interferometric gravitational-wave detectors Winkler W, Danzmann K, Rüdiger A and Schilling R Phys. Rev. 44 A 1991 7022 7036
[37] Degallaix J, Komma J, Forest D et al 2014 Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the einstein telescope Class. Quantum Grav. 31 185010 10.1088/0264-9381/31/18/185010 Measurement of the optical absorption of bulk silicon at cryogenic temperature and the implication for the einstein telescope Degallaix J, Komma J, Forest D et al Class. Quantum Grav. 0264-9381 31 18 185010 2014
[38] Brooks A et al 2019 P1900287: Point Absorbers in Advanced LIGO LIGO Technical Report https://dcc.ligo.org/LIGO-P1900287/public P1900287: Point Absorbers in Advanced LIGO Brooks A et al 2019
[39] Reid S and Martin I 2016 Development of mirror coatings for gravitational wave detectors Coatings 6 61 10.3390/coatings6040061 Development of mirror coatings for gravitational wave detectors Reid S and Martin I Coatings 6 2016 61
[40] Granata M, Saracco E, Morgado N et al 2016 Mechanical loss in state-of-the-art amorphous optical coatings Phys. Rev. D 93 012007 10.1103/physrevd.93.012007 Mechanical loss in state-of-the-art amorphous optical coatings Granata M, Saracco E, Morgado N et al Phys. Rev. 0556-2821 93 D 012007 2016
[41] Pinard L, Michel C, Sassolas B et al 2017 Mirrors used in the ligo interferometers for first detection of gravitational waves Appl. Opt. 56 C11–5 10.1364/ao.56.000c11 Mirrors used in the ligo interferometers for first detection of gravitational waves Pinard L, Michel C, Sassolas B et al Appl. Opt. 0003-6935 56 2017 C11 C15
[42] Evans M, Ballmer S, Fejer M et al 2008 Thermo-optic noise in coated mirrors for high-precision optical measurements Phys. Rev. D 78 102003 10.1103/physrevd.78.102003 Thermo-optic noise in coated mirrors for high-precision optical measurements Evans M, Ballmer S, Fejer M et al Phys. Rev. 0556-2821 78 D 102003 2008
[43] Hong T, Yang H, Gustafson E K, Adhikari R X and Chen Y 2013 Brownian thermal noise in multilayer coated mirrors Phys. Rev. D 87 082001 10.1103/physrevd.87.082001 Brownian thermal noise in multilayer coated mirrors Hong T, Yang H, Gustafson E K, Adhikari R X and Chen Y Phys. Rev. 0556-2821 87 D 082001 2013
[44] Liu X, Queen D R, Metcalf T H, Karel J E and Hellman F 2014 Hydrogen-free amorphous silicon with no tunneling states Phys. Rev. Lett. 113 025503 10.1103/physrevlett.113.025503 Hydrogen-free amorphous silicon with no tunneling states Liu X, Queen D R, Metcalf T H, Karel J E and Hellman F Phys. Rev. Lett. 113 025503 2014
[45] Martin I W, Nawrodt R, Craig K et al 2014 Low temperature mechanical dissipation of an ion-beam sputtered silica film Class. Quantum Grav. 31 035019 10.1088/0264-9381/31/3/035019 Low temperature mechanical dissipation of an ion-beam sputtered silica film Martin I W, Nawrodt R, Craig K et al Class. Quantum Grav. 0264-9381 31 3 035019 2014
[46] Pohl R O, Liu X and Thompson E 2002 Low-temperature thermal conductivity and acoustic attenuation in amorphous solids Rev. Mod. Phys. 74 991–1013 10.1103/revmodphys.74.991 Low-temperature thermal conductivity and acoustic attenuation in amorphous solids Pohl R O, Liu X and Thompson E Rev. Mod. Phys. 0034-6861 74 2002 991 1013
[47] Birney R, Steinlechner J, Tornasi Z et al 2018 Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy Phys. Rev. Lett. 121 191101 10.1103/physrevlett.121.191101 Amorphous silicon with extremely low absorption: beating thermal noise in gravitational astronomy Birney R, Steinlechner J, Tornasi Z et al Phys. Rev. Lett. 121 191101 2018
[48] Cole G D, Zhang W, Bjork B J et al 2016 High-performance near- and mid-infrared crystalline coatings Optica 3 647–56 10.1364/optica.3.000647 High-performance near- and mid-infrared crystalline coatings Cole G D, Zhang W, Bjork B J et al Optica 3 2016 647 656
[49] Cumming A, Lin A, Markosyan A et al 2013 Epitaxial integration of monocrystalline III–V coatings on silicon for thermal noise reduction Optical Interference Coatings MA.2 (https://doi.org/10.1364/OIC.2013.MA.2) 10.1364/OIC.2013.MA.2 Epitaxial integration of monocrystalline III–V coatings on silicon for thermal noise reduction Cumming A, Lin A, Markosyan A et al Optical Interference Coatings 2013
[50] Chalermsongsak T, Hall E D, Cole G D et al 2016 Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As bragg mirrors Metrologia 53 860–8 10.1088/0026-1394/53/2/860 Coherent cancellation of photothermal noise in GaAs/Al0.92Ga0.08As bragg mirrors Chalermsongsak T, Hall E D, Cole G D et al Metrologia 0026-1394 53 2 860 2016 860 868
[51] Yablonovitch E, Hwang D M, Gmitter T J, Florez L T and Harbison J P 1990 Van der waals bonding of gaas epitaxial liftoff films onto arbitrary substrates Appl. Phys. Lett. 56 2419 10.1063/1.102896 Van der waals bonding of gaas epitaxial liftoff films onto arbitrary substrates Yablonovitch E, Hwang D M, Gmitter T J, Florez L T and Harbison J P Appl. Phys. Lett. 56 1990 2419
[52] Steinlechner J, Martin I W, Bell A S et al 2018 Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing Phys. Rev. Lett. 120 263602 10.1103/physrevlett.120.263602 Silicon-based optical mirror coatings for ultrahigh precision metrology and sensing Steinlechner J, Martin I W, Bell A S et al Phys. Rev. Lett. 120 263602 2018
[53] Birney R, Cumming A V, Campsie P et al 2017 Coatings and surface treatments for enhanced performance suspensions for future gravitational wave detectors Class. Quantum Grav. 34 235012 10.1088/1361-6382/aa9354 Coatings and surface treatments for enhanced performance suspensions for future gravitational wave detectors Birney R, Cumming A V, Campsie P et al Class. Quantum Grav. 0264-9381 34 23 235012 2017
[54] Mehmet M, Ast S, Eberle T et al 2011 Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB Opt. Express 19 25763–72 10.1364/oe.19.025763 Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB Mehmet M, Ast S, Eberle T et al Opt. Express 1094-4087 19 2011 25763 25772
[55] Adhikari R X 2019 Integrated detector commissioning Advanced Interferometric Gravitational-Wave Detectors (Essentials of Gravitational-Wave Detectors vol 1) ed D Reitze et al (Singapore: World Scientific) pp 685–704 10.1142/9789813146082_0025 Integrated detector commissioning Adhikari R X ed Reitze D et al Advanced Interferometric Gravitational-Wave Detectors 2424-8223 2019 685 704
[56] Zucker M E and Whitcomb S E 1996 Measurement of optical path fluctuations due to residual gas in the ligo 40 meter interferometer Proc. of the 7th Marcel Grossman Meeting on General Relativity (Hackensack, N.J.: World Scientific) Measurement of optical path fluctuations due to residual gas in the ligo 40 meter interferometer Zucker M E and Whitcomb S E Proc. of the 7th Marcel Grossman Meeting on General Relativity 1996
[57] Takahashi R, Saito Y, Fukushima M et al 2002 Direct measurement of residual gas effect on the sensitivity in tama300 J. Vac. Sci. Technol. A 20 1237 10.1116/1.1479360 Direct measurement of residual gas effect on the sensitivity in tama300 Takahashi R, Saito Y, Fukushima M et al J. Vac. Sci. Technol. 0734-2101 20 A 2002 1237
[58] Tropf W, Thomas M and Harri T 1995 Properties of crystals and glasses Handbook of Optics: Devices, Measurements, and Properties vol 2 2nd edn (Piscataway, NJ: IEEE) ch 33 Properties of crystals and glasses Tropf W, Thomas M and Harri T Handbook of Optics: Devices, Measurements, and Properties 2 1995
[59] Kitamura R, Pilon L and Jonasz M 2007 Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature Appl. Opt. 46 8118–33 10.1364/ao.46.008118 Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature Kitamura R, Pilon L and Jonasz M Appl. Opt. 0003-6935 46 2007 8118 8133
[60] Thomas M E 2006 Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water (Johns Hopkins University/Applied Physics Laboratory series in science and engineering) (Oxford: Oxford University Press) Thomas M E Optical Propagation in Linear Media: Atmospheric Gases and Particles, Solid-State Components, and Water 2006
[61] Lines M and Klocek P 1998 Optical transmission theory Infrared Fiber Optics ed I Aggarwal and J Sanghera (Boca, FL: CRC Press) pp 1–30 ch 1 Optical transmission theory Lines M and Klocek P ed Aggarwal I and Sanghera J Infrared Fiber Optics 1998 1 30
[62] Dragic P, Cavillon M and Ballato J 2017 On the thermo-optic coefficient of P2O5 in SiO2 Opt. Mater. Express 7 3654–61 10.1364/ome.7.003654 On the thermo-optic coefficient of P2O5 in SiO2 Dragic P, Cavillon M and Ballato J Opt. Mater. Express 7 2017 3654 3661
[63] Sidles J A and Sigg D 2006 Optical torques in suspended Fabry Perot interferometers Phys. Lett. A 354 167–72 10.1016/j.physleta.2006.01.051 Optical torques in suspended Fabry Perot interferometers Sidles J A and Sigg D Phys. Lett. 0375-9601 354 A 2006 167 172
[64] Hirose E, Kawabe K, Sigg D, Adhikari R and Saulson P R 2010 Angular instability due to radiation pressure in the LIGO gravitational-wave detector Appl. Opt. 49 3474–84 10.1364/ao.49.003474 Angular instability due to radiation pressure in the LIGO gravitational-wave detector Hirose E, Kawabe K, Sigg D, Adhikari R and Saulson P R Appl. Opt. 0003-6935 49 2010 3474 3484
[65] Dooley K L, Barsotti L, Adhikari R X et al 2013 Angular control of optical cavities in a radiation-pressure-dominated regime: the enhanced LIGO case J. Opt. Soc. Am. A 30 2618–26 10.1364/josaa.30.002618 Angular control of optical cavities in a radiation-pressure-dominated regime: the enhanced LIGO case Dooley K L, Barsotti L, Adhikari R X et al J. Opt. Soc. Am. 0740-3232 30 A 2013 2618 2626
[66] Evans M, Gras S, Fritschel P et al 2015 Observation of parametric instability in Advanced LIGO Phys. Rev. Lett. 114 161102 10.1103/physrevlett.114.161102 Observation of parametric instability in Advanced LIGO Evans M, Gras S, Fritschel P et al Phys. Rev. Lett. 114 161102 2015
[67] Gras S, Fritschel P, Barsotti L and Evans M 2015 Resonant dampers for parametric instabilities in gravitational wave detectors Phys. Rev. D 92 082001 10.1103/physrevd.92.082001 Resonant dampers for parametric instabilities in gravitational wave detectors Gras S, Fritschel P, Barsotti L and Evans M Phys. Rev. 0556-2821 92 D 082001 2015
[68] Knyazev E, Danilishin S, Hild S and Khalili F 2018 Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement Phys. Lett. A 382 2219–25 Special Issue in memory of Professor V B Braginsky 10.1016/j.physleta.2017.10.009 Speedmeter scheme for gravitational-wave detectors based on EPR quantum entanglement Knyazev E, Danilishin S, Hild S and Khalili F Phys. Lett. 0375-9601 382 A 2018 2219 2225
[69] Grote H, Danzmann K, Dooley K L et al 2013 First long-term application of squeezed states of light in a gravitational-wave observatory Phys. Rev. Lett. 110 181101 10.1103/physrevlett.110.181101 First long-term application of squeezed states of light in a gravitational-wave observatory Grote H, Danzmann K, Dooley K L et al Phys. Rev. Lett. 110 181101 2013
[70] Abadie J, Abbott B P et al and T L S Collaboration 2011 A gravitational wave observatory operating beyond the quantum shot-noise limit Nat. Phys. 7 962 10.1038/nphys2083 A gravitational wave observatory operating beyond the quantum shot-noise limit Abadie J, Abbott B P et al and T L S Collaboration Nat. Phys. 7 2011 962
[71] Aasi J, Abadie J, Abbott B P et al 2013 Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Nat. Photon. 7 613–9 10.1038/nphoton.2013.17 Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light Aasi J, Abadie J, Abbott B P et al Nat. Photon. 7 2013 613 619
[72] Miao H, Yang H, Adhikari R X and Chen Y 2014 Quantum limits of interferometer topologies for gravitational radiation detection Class. Quantum Grav. 31 165010 10.1088/0264-9381/31/16/165010 Quantum limits of interferometer topologies for gravitational radiation detection Miao H, Yang H, Adhikari R X and Chen Y Class. Quantum Grav. 0264-9381 31 16 165010 2014
[73] Unruh W G 1983 Quantum noise in the interferometer detector Quantum Optics, Experimental Gravity, and Measurement Theory (Berlin: Springer) pp 647–60 10.1007/978-1-4613-3712-6_28 Quantum noise in the interferometer detector Unruh W G Quantum Optics, Experimental Gravity, and Measurement Theory 1983 647 660
[74] Kimble H J, Levin Y, Matsko A B, Thorne K S and Vyatchanin S P 2001 Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics Phys. Rev. D 65 022002 10.1103/physrevd.65.022002 Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics Kimble H J, Levin Y, Matsko A B, Thorne K S and Vyatchanin S P Phys. Rev. 0556-2821 65 D 022002 2001
[75] Oelker E, Isogai T, Miller J et al 2016 Audio-band frequency-dependent squeezing for gravitational-wave detectors Phys. Rev. Lett. 116 041102 10.1103/physrevlett.116.041102 Audio-band frequency-dependent squeezing for gravitational-wave detectors Oelker E, Isogai T, Miller J et al Phys. Rev. Lett. 116 041102 2016
[76] Vahlbruch H, Chelkowski S, Hage B et al 2006 Coherent control of vacuum squeezing in the gravitational-wave detection band Phys. Rev. Lett. 97 011101 10.1103/physrevlett.97.011101 Coherent control of vacuum squeezing in the gravitational-wave detection band Vahlbruch H, Chelkowski S, Hage B et al Phys. Rev. Lett. 97 011101 2006
[77] Mansell G L, McRae T G, Altin P A et al 2018 Observation of squeezed light in the 2μm region Phys. Rev. Lett. 120 203603 10.1103/physrevlett.120.203603 Observation of squeezed light in the 2μm region Mansell G L, McRae T G, Altin P A et al Phys. Rev. Lett. 120 203603 2018
[78] Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F 1985 Observation of squeezed states generated by four-wave mixing in an optical cavity Phys. Rev. Lett. 55 2409–12 10.1103/physrevlett.55.2409 Observation of squeezed states generated by four-wave mixing in an optical cavity Slusher R E, Hollberg L W, Yurke B, Mertz J C and Valley J F Phys. Rev. Lett. 0031-9007 55 1985 2409 2412
[79] Wu L-A, Kimble H J, Hall J L and Wu H 1986 Generation of squeezed states by parametric down conversion Phys. Rev. Lett. 57 2520–3 10.1103/physrevlett.57.2520 Generation of squeezed states by parametric down conversion Wu L-A, Kimble H J, Hall J L and Wu H Phys. Rev. Lett. 0031-9007 57 1986 2520 2523
[80] Vahlbruch H, Mehmet M, Chelkowski S et al 2008 Observation of squeezed light with 10-dB quantum-noise reduction Phys. Rev. Lett. 100 033602 10.1103/physrevlett.100.033602 Observation of squeezed light with 10-dB quantum-noise reduction Vahlbruch H, Mehmet M, Chelkowski S et al Phys. Rev. Lett. 100 033602 2008
[81] Harms J, Chen Y, Chelkowski S et al 2003 Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors Phys. Rev. D 68 042001 10.1103/physrevd.68.042001 Squeezed-input, optical-spring, signal-recycled gravitational-wave detectors Harms J, Chen Y, Chelkowski S et al Phys. Rev. 0556-2821 68 D 042001 2003
[82] Khalili F Y 2010 Optimal configurations of filter cavity in future gravitational-wave detectors Phys. Rev. D 81 122002 10.1103/physrevd.81.122002 Optimal configurations of filter cavity in future gravitational-wave detectors Khalili F Y Phys. Rev. 0556-2821 81 D 122002 2010
[83] Evans M, Barsotti L, Kwee P, Harms J and Miao H 2013 Realistic filter cavities for advanced gravitational wave detectors Phys. Rev. D 88 022002 10.1103/physrevd.88.022002 Realistic filter cavities for advanced gravitational wave detectors Evans M, Barsotti L, Kwee P, Harms J and Miao H Phys. Rev. 0556-2821 88 D 022002 2013
[84] Isogai T, Miller J, Kwee P, Barsotti L and Evans M 2013 Loss in long-storage-time optical cavities Opt. Express 21 30114–25 10.1364/oe.21.030114 Loss in long-storage-time optical cavities Isogai T, Miller J, Kwee P, Barsotti L and Evans M Opt. Express 1094-4087 21 2013 30114 30125
[85] Kwee P, Miller J, Isogai T, Barsotti L and Evans M 2014 Decoherence and degradation of squeezed states in quantum filter cavities Phys. Rev. D 90 062006 10.1103/physrevd.90.062006 Decoherence and degradation of squeezed states in quantum filter cavities Kwee P, Miller J, Isogai T, Barsotti L and Evans M Phys. Rev. 0556-2821 90 D 062006 2014
[86] Stefszky M S, Mow-Lowry C M, Y Chua S S et al 2012 Balanced homodyne detection of optical quantum states at audio-band frequencies and below Class. Quantum Grav. 29 145015 10.1088/0264-9381/29/14/145015 Balanced homodyne detection of optical quantum states at audio-band frequencies and below Stefszky M S, Mow-Lowry C M, Y Chua S S et al Class. Quantum Grav. 0264-9381 29 14 145015 2012
[87] Barsotti L, Harms J and Schnabel R 2018 Squeezed vacuum states of light for gravitational wave detectors Rep. Prog. Phys. 82 016905 10.1088/1361-6633/aab906 Squeezed vacuum states of light for gravitational wave detectors Barsotti L, Harms J and Schnabel R Rep. Prog. Phys. 82 016905 2018
[88] Dooley K, Leong J, Adams T et al 2016 GEO 600 and the GEO-HF upgrade program: successes and challenges Class. Quantum Grav. 33 075009 10.1088/0264-9381/33/7/075009 GEO 600 and the GEO-HF upgrade program: successes and challenges Dooley K, Leong J, Adams T et al Class. Quantum Grav. 0264-9381 33 7 075009 2016
[89] LASER COMPONENTS GmbH (ed) 2016 InGaAs PIN Photodiodes Manufacturer's Product Note (Olching: Laser Components, Inc) 3028827 V. 4, (http://web.archive.org/web/20170618063335/https://www.lasercomponents.com/fileadmin/user_upload/home/Datasheets/lc/kataloge/ir_components.pdf) Manufacturer's Product Note 3028827
[90] Teledyne Scientific and Imaging 2017 SWIR PV MCT detectors, 2.5 μm, high performance at room temp Internal Company Note (Thousand Oaks, CA: Teledyne Scientific and Imaging) (http://www.teledynejudson.com/news/Documents/2.5%20um%20SWIR%20PV%20MCT%20product%20chart.pdf) SWIR PV MCT detectors, 2.5 μm, high performance at room temp Teledyne Scientific and Imaging Internal Company Note 2017
[91] Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A 2014 New concepts in infrared photodetector designs Appl. Phys. Rev. 1 041102 10.1063/1.4896193 New concepts in infrared photodetector designs Martyniuk P, Antoszewski J, Martyniuk M, Faraone L and Rogalski A Appl. Phys. Rev. 1 041102 2014
[92] Klipstein P, Klin O, Grossman S et al 2011 XBn barrier photodetectors based on InAsSb with high operating temperatures Opt. Eng., Bellingham 50 1–11 10.1117/1.3572149 XBn barrier photodetectors based on InAsSb with high operating temperatures Klipstein P, Klin O, Grossman S et al Opt. Eng., Bellingham 0091-3286 50 2011 1 11
[93] Ting D Z-Y, Soibel A, Hill C J et al 2011 Antimonide superlattice complementary barrier infrared detector (cbird) Infrared Phys. Technol. 54 267–72 10.1016/j.infrared.2010.12.027 Antimonide superlattice complementary barrier infrared detector (cbird) Ting D Z-Y, Soibel A, Hill C J et al Infrared Phys. Technol. 1350-4495 54 2011 267 272
[94] Steenbergen E H, Connelly B C, Metcalfe G D et al 2011 Significantly improved minority carrier lifetime observed in a long-wavelength infrared III–V type-II superlattice comprised of InAs/InAsSb Appl. Phys. Lett. 99 251110 10.1063/1.3671398 Significantly improved minority carrier lifetime observed in a long-wavelength infrared III–V type-II superlattice comprised of InAs/InAsSb Steenbergen E H, Connelly B C, Metcalfe G D et al Appl. Phys. Lett. 99 251110 2011
[95] Aston S M, Barton M A, Bell A S et al 2012 Update on quadruple suspension design for Advanced LIGO Class. Quantum Grav. 29 235004 10.1088/0264-9381/29/23/235004 Update on quadruple suspension design for Advanced LIGO Aston S M, Barton M A, Bell A S et al Class. Quantum Grav. 0264-9381 29 23 235004 2012
[96] Rowan S, Twyford S, Hough J, Gwo D-H and Route R 1998 Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica Phys. Lett. A 246 471–8 10.1016/s0375-9601(98)00533-7 Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica Rowan S, Twyford S, Hough J, Gwo D-H and Route R Phys. Lett. 0375-9601 246 A 1998 471 478
[97] Veggel A A v, Scott J, Skinner D A et al 2009 Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon Class. Quantum Grav. 26 175007 10.1088/0264-9381/26/17/175007 Strength testing and SEM imaging of hydroxide-catalysis bonds between silicon Veggel A A v, Scott J, Skinner D A et al Class. Quantum Grav. 0264-9381 26 17 175007 2009
[98] Wen S, Mittleman R, Mason K et al 2014 Hydraulic external pre-isolator system for LIGO Class. Quantum Grav. 31 235001 10.1088/0264-9381/31/23/235001 Hydraulic external pre-isolator system for LIGO Wen S, Mittleman R, Mason K et al Class. Quantum Grav. 0264-9381 31 23 235001 2014
[99] Matichard F, Lantz B, Mittleman R et al 2015 Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance Class. Quantum Grav. 32 185003 10.1088/0264-9381/32/18/185003 Seismic isolation of Advanced LIGO: review of strategy, instrumentation and performance Matichard F, Lantz B, Mittleman R et al Class. Quantum Grav. 0264-9381 32 18 185003 2015
[100] Shapiro B, Madden-Fong D and Lantz B 2014 LIGO Voyager quad pendulum conceptual design optimization LIGO Technical Report https://dcc.ligo.org/LIGO-T1300786/public LIGO Voyager quad pendulum conceptual design optimization Shapiro B, Madden-Fong D and Lantz B 2014
[101] Anderson O L and Bömmel H E 1955 Ultrasonic absorption in fused silica at low temperatures and high frequencies J. Am. Ceram. Soc. 38 125–31 10.1111/j.1151-2916.1955.tb14914.x Ultrasonic absorption in fused silica at low temperatures and high frequencies Anderson O L and Bömmel H E J. Am. Ceram. Soc. 0002-7820 38 1955 125 131
[102] Fine M E, Van Duyne H and Kenney N T 2004 Low-temperature internal friction and elasticity effects in vitreous silica J. Appl. Phys. 25 402–5 10.1063/1.1721649 Low-temperature internal friction and elasticity effects in vitreous silica Fine M E, Van Duyne H and Kenney N T J. Appl. Phys. 25 2004 402 405
[103] Marx J W and Sivertsen J M 2004 Temperature dependence of the elastic moduli and internal friction of silica and glass J. Appl. Phys. 24 81–7 10.1063/1.1721138 Temperature dependence of the elastic moduli and internal friction of silica and glass Marx J W and Sivertsen J M J. Appl. Phys. 24 2004 81 87
[104] McSkimin H J 2004 Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica J. Appl. Phys. 24 988–97 10.1063/1.1721449 Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica McSkimin H J J. Appl. Phys. 24 2004 988 997
[105] Cumming A V, Cunningham L, Hammond G D et al 2014 Silicon mirror suspensions for gravitational wave detectors Class. Quantum Grav. 31 025017 10.1088/0264-9381/31/2/025017 Silicon mirror suspensions for gravitational wave detectors Cumming A V, Cunningham L, Hammond G D et al Class. Quantum Grav. 0264-9381 31 2 025017 2014
[106] Buchman S, Everitt F, Parkinson B et al 1996 Experimental techniques for gyroscope performance enhancement for the Gravity Probe B relativity mission Class. Quantum Grav. 13 A185–91 10.1088/0264-9381/13/11a/026 Experimental techniques for gyroscope performance enhancement for the Gravity Probe B relativity mission Buchman S, Everitt F, Parkinson B et al Class. Quantum Grav. 0264-9381 13 11A 026 1996 A185 A191
[107] Prokhorov L, Koptsov D, Matiushechkina M et al 2018 Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator Phys. Lett. A 382 2186–91 10.1016/j.physleta.2017.07.007 Upper limits on the mechanical loss of silicate bonds in a silicon tuning fork oscillator Prokhorov L, Koptsov D, Matiushechkina M et al Phys. Lett. 0375-9601 382 A 2018 2186 2191
[108] Kumar R, Chen D, Hagiwara A et al 2016 Status of the cryogenic payload system for the KAGRA detector J. Phys.: Conf. Ser. 716 012017 10.1088/1742-6596/716/1/012017 Status of the cryogenic payload system for the KAGRA detector Kumar R, Chen D, Hagiwara A et al J. Phys.: Conf. Ser. 1742-6596 716 1 012017 2016
[109] Adhikari R X, Ajith P, Chen Y et al 2019 Astrophysical science metrics for next-generation gravitational-wave detectors Class. Quantum Grav. 36 245010 10.1088/1361-6382/ab3cff Astrophysical science metrics for next-generation gravitational-wave detectors Adhikari R X, Ajith P, Chen Y et al Class. Quantum Grav. 0264-9381 36 24 245010 2019
[110] Scholle K, Lamrini S, Koopmann P and Fuhrberg P 2010 2 μm laser sources and their possible applications Frontiers in Guided Wave Optics and Optoelectronics ed B Pal (London: InTechOpen) pp 471–500 ch 21 10.5772/39538 2 μm laser sources and their possible applications Scholle K, Lamrini S, Koopmann P and Fuhrberg P ed Pal B Frontiers in Guided Wave Optics and Optoelectronics 2010 471 500
[111] Willke B, King P, Savage R and Fritschel P 2011 Pre-stabilized laser design requirements LIGO Technical Report https://dcc.ligo.org/LIGO-T050036/public Pre-stabilized laser design requirements Willke B, King P, Savage R and Fritschel P 2011
[112] Heurs M, Quetschke V M, Willke B, Danzmann K and Freitag I 2004 Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique Opt. Lett. 29 2148–50 10.1364/ol.29.002148 Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique Heurs M, Quetschke V M, Willke B, Danzmann K and Freitag I Opt. Lett. 29 2004 2148 2150
[113] Kwee P, Bogan C, Danzmann K et al 2012 Stabilized high-power laser system for the gravitational wave detector advanced LIGO Opt. Express 20 10617–34 10.1364/oe.20.010617 Stabilized high-power laser system for the gravitational wave detector advanced LIGO Kwee P, Bogan C, Danzmann K et al Opt. Express 1094-4087 20 2012 10617 10634
[114] Hall E 2016 Long-baseline laser interferometry for the detection of binary black-hole mergers Ph D Thesis (California Institute of Technology) Ph D Thesis Hall E 2016
[115] Sincore A, Bradford J, Cook J, Shah L and Richardson M 2017 High average power thulium-doped silica fiber lasers: Review of systems and concepts IEEE J. Sel. Top. Quantum Electron. 24 0901808 10.1109/JSTQE.2017.2775964 High average power thulium-doped silica fiber lasers: Review of systems and concepts Sincore A, Bradford J, Cook J, Shah L and Richardson M IEEE J. Sel. Top. Quantum Electron. 1077-260X 24 0901808 2017
[116] Hemming A, Simakov N, Haub J and Carter A 2014 A review of recent progress in holmium-doped silica fibre sources Opt. Fiber Technol. 20 621–30 10.1016/j.yofte.2014.08.010 A review of recent progress in holmium-doped silica fibre sources Hemming A, Simakov N, Haub J and Carter A Opt. Fiber Technol. 20 2014 621 630
[117] Hemming A, Simakov N, Haub J and Carter A 2015 Thulium and holmium doped fibre lasers for 2 micron applications Workshop on Specialty Optical Fibers and Their Applications WT1A.3 (https://doi.org/10.1364/WSOF.2015.WT1A.3) 10.1364/WSOF.2015.WT1A.3 Thulium and holmium doped fibre lasers for 2 micron applications Hemming A, Simakov N, Haub J and Carter A Workshop on Specialty Optical Fibers and Their Applications 2015
[118] Ganija M, Simakov N, Hemming A et al 2016 Efficient, low threshold, cryogenic Ho:YAG laser Opt. Express 24 11569–77 10.1364/oe.24.011569 Efficient, low threshold, cryogenic Ho:YAG laser Ganija M, Simakov N, Hemming A et al Opt. Express 1094-4087 24 2016 11569 11577
[119] Fu S, Shi W, Feng Y et al 2017 Review of recent progress on single-frequency fiber lasers [invited] J. Opt. Soc. Am. B 34 A49–62 10.1364/josab.34.000a49 Review of recent progress on single-frequency fiber lasers [invited] Fu S, Shi W, Feng Y et al J. Opt. Soc. Am. 0740-3224 34 B 2017 A49 A62
[120] Q-Peak Inc. 2018 Firebow CW10-500 Tm:Fiber CW Laser (Bedford, MA: Q-Peak Inc) Q-Peak Inc. Firebow CW10-500 Tm:Fiber CW Laser 2018
[121] Willke B, Brozek S, Danzmann K, Quetschke V and Gossler S 2000 Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source Opt. Lett. 25 1019–21 10.1364/ol.25.001019 Frequency stabilization of a monolithic Nd:YAG ring laser by controlling the power of the laser-diode pump source Willke B, Brozek S, Danzmann K, Quetschke V and Gossler S Opt. Lett. 25 2000 1019 1021
[122] Lin Z, Gao C, Gao M et al 2009 Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes Front. Optoelectron. China 2 410 10.1007/s12200-009-0067-z Diode-pumped single-frequency Tm:YAG NPRO laser by using different pumping spot sizes Lin Z, Gao C, Gao M et al Front. Optoelectron. China 2 2009 410
[123] Yao B-Q, Duan X-M, Fang D et al 2008 7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser Opt. Lett. 33 2161–3 10.1364/ol.33.002161 7.3 W of single-frequency output power at 2.09 μm from an Ho:YAG monolithic nonplanar ring laser Yao B-Q, Duan X-M, Fang D et al Opt. Lett. 33 2008 2161 2163
[124] Johnson L F, Geusic J E and Van Uitert L G 1965 Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet Appl. Phys. Lett. 7 127–9 10.1063/1.1754339 Coherent oscillations from Tm3+, Ho3+, Yb3+ and Er3+ ions in yttrium aluminum garnet Johnson L F, Geusic J E and Van Uitert L G Appl. Phys. Lett. 7 1965 127 129
[125] Hemming A, Bennetts S, Simakov N et al 2013 High power operation of cladding pumped holmium-doped silica fibre lasers Opt. Express 21 4560–6 10.1364/oe.21.004560 High power operation of cladding pumped holmium-doped silica fibre lasers Hemming A, Bennetts S, Simakov N et al Opt. Express 1094-4087 21 2013 4560 4566
[126] Simakov N, Hemming A, Haub J and Carter A 2014 High power holmium fiber lasers The European Conf. on Optical Communication (ECOC) p Tu.3.4.1 High power holmium fiber lasers Simakov N, Hemming A, Haub J and Carter A The European Conf. on Optical Communication (ECOC) 2014 Tu.3.4.1
[127] Ganija M, Hemming A, Simakov N et al 2017 High power cryogenic Ho:YAG laser Opt. Express 25 31889–95 10.1364/oe.25.031889 High power cryogenic Ho:YAG laser Ganija M, Hemming A, Simakov N et al Opt. Express 1094-4087 25 2017 31889 31895
[128] Goodno G D, Book L D and Rothenberg J E 2009 Low-phase-noise, single-frequency, single-mode 608 w thulium fiber amplifier Opt. Lett. 34 1204–6 10.1364/ol.34.001204 Low-phase-noise, single-frequency, single-mode 608 w thulium fiber amplifier Goodno G D, Book L D and Rothenberg J E Opt. Lett. 34 2009 1204 1206
[129] Martynov D, Miao H, Yang H et al 2019 Exploring the sensitivity of gravitational wave detectors to neutron star physics Phys. Rev. D 99 102004 10.1103/physrevd.99.102004 Exploring the sensitivity of gravitational wave detectors to neutron star physics Martynov D, Miao H, Yang H et al Phys. Rev. 0556-2821 99 D 102004 2019
[130] Reitze D et al 2019 Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO (arXiv:1907.04833) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO Reitze D et al 2019
[131] Shapiro B, Adhikari R X, Aguiar O et al 2017 Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories Cryogenics 81 83–92 10.1016/j.cryogenics.2016.12.004 Cryogenically cooled ultra low vibration silicon mirrors for gravitational wave observatories Shapiro B, Adhikari R X, Aguiar O et al Cryogenics 81 2017 83 92
[132] Sakakibara Y, Kimura N, Akutsu T, Suzuki T and Kuroda K 2015 Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors Class. Quantum Grav. 32 155011 10.1088/0264-9381/32/15/155011 Performance test of pipe-shaped radiation shields for cryogenic interferometric gravitational wave detectors Sakakibara Y, Kimura N, Akutsu T, Suzuki T and Kuroda K Class. Quantum Grav. 0264-9381 32 15 155011 2015
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.