$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Distinct and combined responses to environmental geometry and features in a working-memory reorientation task in rats and chicks 원문보기

Scientific reports, v.10, 2020년, pp.7508 -   

Lee, Sang Ah (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea) ,  Austen, Joseph M. (Department of Psychology, Durham University, Durham, UK) ,  Sovrano, Valeria Anna (Centre for Mind) ,  Vallortigara, Giorgio (Centre for Mind) ,  McGregor, Anthony (Department of Psychology, Durham University, Durham, UK) ,  Lever, Colin (Department of Psychology, Durham University, Durham, UK)

Abstract AI-Helper 아이콘AI-Helper

The original provocative formulation of the ‘geometric module’ hypothesis was based on a working-memory task in rats which suggested that spontaneous reorientation behavior is based solely on the environmental geometry and is impervious to featural cues. Here, we retested that claim by r...

참고문헌 (64)

  1. 1. Cheng, K. & Gallistel, C. R. Testing the geometric power of an animal’s spatial representation. In “Animal cognition: Proceedings of the Harry Frank Guggenheim conference” (Edited by H. L. Roitblat, T. G. Bever, & H. S. Terrace). Hillsdale, NJ: Erlbaum (1984). 

  2. 2. Cheng K A purely geometric module in the rat’s spatial representation Cognition 1986 23 149 178 10.1016/0010-0277(86)90041-7 3742991 

  3. 3. Gallistel, C. R. The Organization of Learning. Cambridge, MA: MIT Press. (1990). 

  4. 4. Cheng K Huttenlocher J Newcombe NS 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective Psychon. Bull. Rev. 2013 20 1033 1054 10.3758/s13423-013-0416-1 23456412 

  5. 5. Vallortigara, G. Animals as natural geometers. In “Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain and Behavior” (Edited by L. Tommasi, L. Nadel & M. Peterson). MIT Press, Cambridge, MA (2009). 

  6. 6. Tommasi L Chiandetti C Pecchia T Sovrano VA Vallortigara G From natural geometry to spatial cognition Neurosci. Biobehav. Rev. 2012 36 799 824 10.1016/j.neubiorev.2011.12.007 22206900 

  7. 7. Hermer L Spelke ES A geometric process for spatial reorientation in young children Nature 1994 370 57 59 10.1038/370057a0 8015605 

  8. 8. Fodor, J. A. The modularity of mind. An essay on faculty psychology. Cambridge, MA: MIT Press (1983). 

  9. 9. Vallortigara G Zanforlin M Pasti G Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus) J. Comp. Psychol. 1990 104 248 254 10.1037/0735-7036.104.3.248 2225762 

  10. 10. Lee SA Shusterman A Spelke ES Reorientation and landmark-guided search by young children: evidence for two systems Psychol. Sci. 2006 17 7 577 82 10.1111/j.1467-9280.2006.01747.x 16866742 

  11. 11. Pearce JM The 36th Sir Frederick Bartlett Lecture: An associative analysis of spatial learning. Quart J. Exp. Psychol. 2009 62 1665 1684 10.1080/17470210902805589 

  12. 12. Gray ER Bloomfield LL Ferrey A Spetch ML Sturdy CB Spatial encoding in mountain chickadees: features overshadow geometry Biol. Lett. 2005 1 314 317 10.1098/rsbl.2005.0347 17148196 

  13. 13. Kosaki Y Austen JM McGregor A Overshadowing of geometry learning by discrete landmarks in the water maze: Effects of relative salience and relative validity of competing cues J. Exp. Psychol.: An. Behav. Proc. 2013 39 126 139 

  14. 14. Horne MR Pearce JM A landmark blocks searching for a hidden platform in an environment with a distinctive shape after extended pretraining Learn. Behav. 2009 37 167 178 10.3758/LB.37.2.167 19380894 

  15. 15. Pearce JM Graham M Good MA Jones PM McGregor A Potentiation, overshadowing, and blocking of spatial learning based on-the shape of the environment J. Exp. Psychol.: An. Behav. Proc. 2006 32 201 214 

  16. 16. Buckley MG Smith AD Haselgrove M Shape shifting: Local landmarks interfere with navigation by, and recognition of, global shape J. Exp. Psychol: Learning, Memory and Cogn. 2014 40 492 510 

  17. 17. Cuell SF Good MA Dopson JC Pearce JM Horne MR Changes in attention to relevant and irrelevant stimuli during spatial learning J. Exp. Psychol.: An. Behav. Proc. 2012 38 244 254 

  18. 18. Austen JM McGregor A Revaluation of geometric cues reduces landmark discrimination via within-compound associations Learn. Behav. 2014 42 4 330 336 10.3758/s13420-014-0150-1 25123584 

  19. 19. Horne MR Pearce JM Between-cue associations influence searching for a hidden goal in an environment with a distinctive shape J. Exp. Psych.: An. Behav. Proc. 2009 35 99 107 

  20. 20. Rhodes SEV Creighton G Killcross AS Good M Honey RC Integration of geometric with luminance information in the rat: Evidence from within-compound associations J. Exp. Psychol.: An. Behav. Proc. 2009 35 92 98 

  21. 21. Horne MR Pearce JM Potentiation and overshadowing between landmarks and environmental geometric cues Learn. Behav. 2011 39 4 371 82 10.3758/s13420-011-0032-8 21509462 

  22. 22. Austen JM Kosaki Y McGregor A Within-compound associations explain potentiation and failure to overshadow learning based on geometry by discrete landmarks J. Exp. Psychol.: An. Behav. Process. 2013 39 259 272 

  23. 23. Cole MR Gibson L Pollack A Yates L Potentiation and overshadowing of shape by wall color in a kite-shaped maze using rats in a foraging task Learning and Motivation 2011 42 99 112 10.1016/j.lmot.2010.11.001 

  24. 24. Kelly DM Features enhance the encoding of geometry An. Cogn. 2010 13 453 462 10.1007/s10071-009-0296-y 

  25. 25. Lee SA Spelke ES Two systems of spatial representation underlying navigation Exp. Brain Res. 2010 206 179 188 10.1007/s00221-010-2349-5 20614214 

  26. 26. Gallistel CR Matzel LD The neuroscience of learning: Beyond the Hebbian synapse Annual Rev. Psychol. 2013 64 169 200 10.1146/annurev-psych-113011-143807 22804775 

  27. 27. Golob. EJ Taube JS Differences between appetitive and aversive reinforcement on reorientation in a spatial working memory task Behav. Brain Res. 2002 136 309 316 10.1016/S0166-4328(02)00184-5 12385817 

  28. 28. Shusterman A Lee SA Spelke ES Cognitive effects of language on human navigation Cognition 2011 120 186 201 10.1016/j.cognition.2011.04.004 21665199 

  29. 29. Learmonth AE Newcombe NS Sheridan N Jones M Why size counts: Children’s spatial reorientation in large and small enclosures Dev. Sci. 2008 11 414 426 10.1111/j.1467-7687.2008.00686.x 18466375 

  30. 30. Sovrano VA Bisazza A Vallortigara G Animals’ use of landmarks and metric information to reorient: Effects of the size of the experimental space Cognition 2005 97 121 133 10.1016/j.cognition.2004.08.003 16226559 

  31. 31. Newcombe NS Ratliff KR Shallcross WL Twyman AD Young children’s use of features to reorient is more than just associative: further evidence against a modular view of spatial processing Dev. Sci. 2008 13 213 220 10.1111/j.1467-7687.2009.00877.x 

  32. 32. Lee SA Vallortigara G Ruga V Sovrano VA Independent uses of geometry and landmark in a spontaneous reorientation task: A study of two species of fish An. Cogn. 2012 15 861 870 10.1007/s10071-012-0512-z 

  33. 33. Sovrano VA Baratti G Lee SA The role of learning and environmental geometry in landmark-based spatial reorientation of fish (Xenotoca eiseni) PLOS ONE 2020 15 3 e0229608 10.1371/journal.pone.0229608 32126075 

  34. 34. Lee SA Tucci V Sovrano VA Vallortigara G Working-memory and reference-memory tests of spatial navigation in mice (Mus musculus) J. Comp. Psychol. 2015 129 189 197 10.1037/a0039129 25984938 

  35. 35. Lee SA Tucci V Vallortigara G Spatial impairment and memory in genetic disorders: Insights from mouse models Brain Sci. 2017 7 2 17 10.3390/brainsci7020017 

  36. 36. Hartley T Lever C Burgess N O’Keefe J Space in the brain: how the hippocampal formation supports spatial cognition Phil. Trans. Royal Soc. B: Biol. Sci. 2014 369 20120510 10.1098/rstb.2012.0510 

  37. 37. Taube J The head direction signal: origins and sensory-motor integration Annual Rev. Neurosci. 2007 30 181 207 10.1146/annurev.neuro.29.051605.112854 17341158 

  38. 38. Sheynikhovich D Chavarriaga R Strosslin T Arleo A Gerstner W Is there a geometric module for spatial orientation? Insights from a rodent navigation model Psychol. Rev. 2009 116 540 566 10.1037/a0016170 19618986 

  39. 39. Girman, S. V., Sauve, Y., Lund, R. D. Receptive field properties of single neurons in rat primary visual cortex.? J. Neurophysiol. 82 , 301?311 (1999). 

  40. 40. Over, R. & Moore, D. Spatial acuity of the chicken. Brain Research 211 (2), 424?426 (1981). 

  41. 41. Lee SA Spelke ES Vallortigara G Chicks, like children, spontaneously reorient by three-dimensional environmental geometry, not by image matching Biol. Lett. 2012 8 492 494 10.1098/rsbl.2012.0067 22417791 

  42. 42. Lee SA A boundary-based view of spatial cognition: A synthesis. Curr Opin. Behav. Sci. 2017 16 58 65 

  43. 43. Barry C The boundary vector cell model of place cell firing and spatial memory Rev. Neurosci. 2006 17 71 97 10.1515/REVNEURO.2006.17.1-2.71 16703944 

  44. 44. Keinath AT Julian JB Epstein RA Muzzio IA Environmental geometry aligns the hippocampal map during spatial reorientation Curr. Biol. 2017 27 309 317 10.1016/j.cub.2016.11.046 28089516 

  45. 45. Poulter SL Hartley T Lever C The neurobiology of navigation Curr. Biol. 2018 28 1023 1042 10.1016/j.cub.2018.05.050 

  46. 46. Xu Y Regier T Newcombe NS An adaptive cue combination model of human spatial reorientation Cognition 2017 163 56 66 10.1016/j.cognition.2017.02.016 28285237 

  47. 47. Fantz, R. L. Form preferences in newly hatched chicks. Journal of Comparative and Physiological Psychology 50 (5), 422?430 (1957). 

  48. 48. Lee SA Sovrano VA Spelke ES Navigation as a source of geometric knowledge: Young children’s use of length, angle, distance, and direction in a reorientation task Cognition 2012 123 144 161 10.1016/j.cognition.2011.12.015 22257573 

  49. 49. Lee SA Vallortigara G Flore M Spelke ES Sovrano VA Navigation by environmental geometry: the use of zebrafish as a model J. Exp. Biol. 2013 216 3693 3699 10.1242/jeb.088625 23788708 

  50. 50. Doeller CF King JA Burgess N Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory Proceed. National Academy Sci. 2008 105 5915 5920 10.1073/pnas.0801489105 

  51. 51. Mayer U Pecchia T Bingman V Vallortigara G Hippocampus and Medial Striatum Dissociation during Goal Navigation by Geometry or Features in the Domestic Chick: An Immediate Early Gene Study Hippocampus 2016 26 27 40 10.1002/hipo.22486 26135386 

  52. 52. Kosaki Y Poulter SL Austen JM McGregor A Dorsolateral striatal lesions impair navigation based on landmark-goal vectors but facilitate spatial learning based on a “cognitive map” Learning & Memory 2015 22 179 191 25691518 

  53. 53. McGregor A Hayward AJ Pearce JM Good MA Hippocampal lesions disrupt navigation based on the shape of the environment Behav. Neurosci. 2004 118 1011 1021 10.1037/0735-7044.118.5.1011 15506883 

  54. 54. Pearce JM Roberts AD Good MA Hippocampal lesions disrupt navigation based on cognitive maps but not heading vectors Nature 1998 396 75 77 10.1038/23941 9817202 

  55. 55. Solstad T Boccara CN Kropff E Moser MB Moser EI Representation of geometric borders in the entorhinal cortex Science 2008 322 1865 1868 10.1126/science.1166466 19095945 

  56. 56. Lever C Burton S Jeewajee A O’Keefe J Burgess N Boundary vector cells in the subiculum of the hippocampal formation J. Neurosci. 2009 29 9771 9777 10.1523/JNEUROSCI.1319-09.2009 19657030 

  57. 57. Stewart S Jeewajee A Wills TJ Burgess N Lever C Boundary coding in the rat subiculum. Philosoph. Trans Royal Soc. B: Biol. Sci. 2014 369 20120514 

  58. 58. O’Keefe J Burgess N Geometric determinants of the place fields hippocampal neurons Nature 1996 381 6581 425 8 10.1038/381425a0 8632799 

  59. 59. Hartley T Burgess N Lever C Cacucci F O’Keefe J Modeling place fields in terms of the cortical inputs to the hippocampus Hippocampus 2000 10 369 379 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0 10985276 

  60. 60. Lever C Wills T Cacucci F Burgess N O’Keefe J Long-term plasticity in the hippocampal place cell representation of environmental geometry Nature 2002 416 90 94 10.1038/416090a 11882899 

  61. 61. Mayer U Bhushan R Vallortigara G Lee SA Representation of environmental shape in the hippocampus of domestic chicks (Gallus gallus) Brain Stucture and Function 2018 223 941 953 10.1007/s00429-017-1537-5 

  62. 62. Lee SA Electrical signatures of spatial boundaries in the human subiculum J. Neurosci. 2018 38 3265 3272 10.1523/JNEUROSCI.3216-17.2018 29467145 

  63. 63. Olton DS Schlosberg P Food-searching strategies in young rats: Win-shift predominates over win-stay J. Comp. Physiol. Psychol. 1978 92 609 618 10.1037/h0077492 

  64. 64. Bhushan, R. Spatial representation from birth to old age: Insights from comparative neurobiology and behavioral genomics (University of Trento, 2018). 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로