$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effective time- and frequency-domain techniques for interpreting seismic precursors in groundwater level fluctuations on Jeju Island, Korea 원문보기

Scientific reports, v.10, 2020년, pp.7866 -   

Hwang, Hak Soo (SEKOGEO Co., Ltd., Seongnam, Gyeonggi-do 13524 Republic of Korea) ,  Hamm, Se-Yeong (Department of Geological Sciences, Pusan National University, Busan, 46241 Republic of Korea) ,  Cheong, Jae-Yeol (Korea Radioactive Waste Agency, Daejeon, 34129 Republic of Korea) ,  Lee, Soo-Hyoung (Groundwater Laboratory, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 Republic of Korea) ,  Ha, Kyoochul (Groundwater Laboratory, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 Republic of Korea) ,  Lee, Cholwoo (Deep Subsurface Research Center, Korea Institute of Geoscience and Mineral Resources (KIGAM), Daejeon, 34132 Republic of Korea) ,  Woo, Nam-Chil (Department of Earth System Sciences, Yonsei University, Seoul, 03722 Republic of Korea) ,  Yun, Sul-Min (Department of Geological Sciences, Pusan National University, Busan, 46241 Republic of Korea) ,  Kim, Kwang-Hee (Department of Geological Sciences, Pusan National University, Busan, 46241 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

An effective method, involving time and frequency domains was developed to interpret seismic precursors by comparing groundwater-level fluctuations recorded immediately and long before the occurrence of a known earthquake. The proposed method, consisting of the pre-processing (3-point filtering, ban...

참고문헌 (69)

  1. 1. Wakita H Water wells as possible indicators of tectonic strain Science 1975 189 553 555 10.1126/science.189.4202.553 17798302 

  2. 2. Rojstaczer S Wolf S Michel R Permeability enhancement in the shallow crust as a cause of earthquake-induced hydrological changes Nature 1995 373 237 239 10.1038/373237a0 

  3. 3. Muir-Wood R King GCP Hydrological signatures of earthquake strain J. Geophys. Res. 1993 98 22035 22068 10.1029/93JB02219 

  4. 4. Quility E Roeloffs E Water level changes in response to the December 20, 1994, M4.7 earthquake near Parkfield, California Bull. Seismol. Soc. Am 1997 87 310 317 

  5. 5. Lay, T. & Wallace, T. C. Modern Global Seismology (Academic Press, 1995). 

  6. 6. Sil S Freymueller JT Well water level changes in Fairbanks, Alaska, due to the great Sumatra-Andaman earthquake Earth Planets Space 2006 58 181 184 10.1186/BF03353376 

  7. 7. Manga, M. & Wang, C. Y. Earthquake hydrology in Treatise on geophysics (eds. Kanamori, H. and Schubert, G.) 293?320 (Elsevier Science, 2007). 

  8. 8. Shi Z Wang G Manga M Wang C-Y Mechanism of co-seismic water level change following four great earthquakes ? insights from co-seismic responses throughout the Chinese mainland Earth Planet. Sci. Lett. 2015 430 66 74 10.1016/j.epsl.2015.08.012 

  9. 9. Liu CY Chia Y Chuang PY Chiu YC Tseng TL Impacts of hydrogeological characteristics on groundwater-level changes induced by earthquakes Hydrogeol. J. 2018 26 2 451 465 10.1007/s10040-017-1684-z 

  10. 10. Mastrorillo L Sustained post seismic effects on groundwater flow in fractured carbonate aquifers in Central Italy Hydrol. Process. 2020 34 1167 1181 10.1002/hyp.13662 

  11. 11. Claesson L Skelton A Graham C Morth M The timescale and mechanisms of fault sealing and water-rock interaction after an earthquake Geofluids 2007 7 427 440 10.1111/j.1468-8123.2007.00197.x 

  12. 12. Skelton A Changes in groundwater chemistry before two consecutive earthquakes in Iceland Nat. Geosci. 2014 7 752 756 10.1038/ngeo2250 

  13. 13. Ma, Z. et al. Earthquake Prediction: Nine Major Earthquakes in China (1966?1976). (Seismological Press, 1990). 

  14. 14. Woith H Heterogeneous response of hydrogeological systems to the Izmit and Duzce (Turkey) earthquakes of 1999 Hydrogeol. J. 2003 11 113 121 10.1007/s10040-002-0244-2 

  15. 15. Charmoille, A., Fabbri, O., Mudry, J., Guglielmi, Y. & Bertrand, C. Post-seismic permeability change in a shallow fractured aquifer following a M 5.1 earthquake (Fourbanne karst aquifer, Jura outermost thrust unit, eastern France). Geophys. Res. Lett . 32 , 10.1029/2005GL023859 (2005). 

  16. 16. Wang C-Y Manga M Wang C-H Chen C-H Transient change in groundwater temperature after earthquakes Geology 2012 40 119 122 10.1130/G32565.1 

  17. 17. Claesson L Hydrogeochemical changes before and after a major earthquake Geology 2004 32 641 644 10.1130/G20542.1 

  18. 18. Barberio MD Barbieri M Billi A Doglioni C Petitta M Hydrogeochemical changes before and during the 2016 Amatrice-Norcia seismic sequence (central Italy) Scientific Reports 2017 7 1 1 12 10.1038/s41598-016-0028-x 28127051 

  19. 19. Onda S Groundwater oxygen isotope anomaly before the M6. 6 Tottori earthquake in Southwest Japan Scientific Reports 2018 8 1 1 7 10.1038/s41598-018-23303-8 29311619 

  20. 20. Manga M Response of streamflow to multiple earthquakes and implications for the origin of postseismic discharge changes Geophys. Res. Lett. 2003 30 1214 10.1029/2002GL016618 

  21. 21. Manga M Rowland JC Response of Alum Rock springs to the October 30, 2007 Alum Rock earthquake and implications for the origin of increased discharge after earthquakes Geofluids 2009 9 237 250 10.1111/j.1468-8123.2009.00250.x 

  22. 22. Seed H Lee KL Liquefaction of saturated sands during cyclic loading J. Soil Mech. Found. Div 1966 92 105 134 

  23. 23. Wang C-Y Liquefaction beyond the near field Seismol. Res. Lett. 2007 78 512 517 10.1785/gssrl.78.5.512 

  24. 24. Manga M Bonini M Large historical eruption at subaerial mud volcanoes, Italy Nat. Hazards Earth Syst. Sci. 2012 12 3377 3386 10.5194/nhess-12-3377-2012 

  25. 25. Manga M Earthquake triggering of mud volcanoes Mar. Pet. Geol. 2009 26 1785 1798 10.1016/j.marpetgeo.2009.01.019 

  26. 26. Manga M Brodsky E Seismic triggering of eruptions in the far field: Volcanoes and geysers Annu. Rev. Earth Planet. Sci. 2006 34 263 291 10.1146/annurev.earth.34.031405.125125 

  27. 27. Chia YP Wang YS Wu HP Chiu JJ Liu CW Changes of groundwater level due to the 1999 Chi-Chi earthquake in the ChoshuiRiver alluvial fan in Taiwan Bull. Seismol. Soc. Am. 2001 91 1062 1068 10.1785/0120000726 

  28. 28. Jonsson S Segall P Pedersen R Bjornsson G Post-earthquake ground movements correlated to pore-pressure transients Nature 2003 424 179 183 10.1038/nature01776 12853953 

  29. 29. Matsumoto N Kitagawa G Roeloffs EA Hydrological response to earthquakes in the Haibara well, central Japan - I. Groundwater level changes revealed using state space decomposition of atmospheric pressure, rainfall and tidal responses Geophys. J. Int 2003 155 885 898 10.1111/j.1365-246X.2003.02103.x 

  30. 30. Roeloffs E Water-level changes induced by local and distant earthquakes at long valley caldera, California J. Volcanol. Geotherm. Res. 2003 127 269 303 10.1016/S0377-0273(03)00173-2 

  31. 31. Wang C-Y Chia Y Mechanism of water level changes during earthquakes: near field versus intermediate field Geophys. Res. Lett. 2008 35 L12402 

  32. 32. De Luca G Di Carlo G Tallini M A record of changes in the Gran Sasso groundwater before, during and after the 2016 Amatrice earthquake, central Italy Scientific Reports 2018 8 1 1 16 10.1038/s41598-017-17765-5 29311619 

  33. 33. Lockner DA Beeler NM Rock failure and earthquakes International Handbook of Earthquake and Engineering Seismology (edited. by William, H. et al.) 2002 81A 505 537 10.1016/S0074-6142(02)80235-2 

  34. 34. Cooper HH Bredehoeft JD Papadopulos IS Bennett RR The response of well-aquifer systems to seismic waves J. Geophys. Res. 1965 70 3915 3926 10.1029/JZ070i016p03915 

  35. 35. Liu L-B Roeloffs E Zheng X-Y Seismically induced water level fluctuations in the Wali Well, Beijing, China J. Geophys. Res. 1989 94 9453 10.1029/JB094iB07p09453 

  36. 36. Brodsky EE A mechanism for sustained groundwater pressure changes induced by distant earthquakes J. Geophys. Res. 2003 108 B8 2390 10.1029/2002JB002321 

  37. 37. Wang C-Y Chia Y Wang P-L Dreger D Role of S waves and love waves in coseismic permeability enhancement Geophys. Res. Lett. 2009 36 L09404 

  38. 38. Ge S Stover SC Hydrodynamic response to strike- and dip-slip faulting in a half-space J. Geophys. Res. 2000 105 25513 25524 10.1029/2000JB900233 

  39. 39. Shi, Z., Wang, G. & Liu, C. Co-seismic groundwater level changes induced by the May 12, 2008 Wenchuan earthquake in the near field. Pure App. Geophys . 170 , 1773?1783 (2013). 

  40. 40. Elkhoury JE Brodsky EE Agnew DC Seismic waves increase permeability Nature 2006 441 1135 1138 10.1038/nature04798 16810253 

  41. 41. Lai G Tidal response variation and recovery following the Wenchuan earthquake from water level data of multiple wells in the nearfield Tectonophysics 2014 619-620 115 122 10.1016/j.tecto.2013.08.039 

  42. 42. Crews JB Cooper CA Experimental evidence for seismically initiated gas bubble nucleation and growth in groundwater as a mechanism for coseismic borehole water level rise and remotely triggered seismicity J. Geophys. Res. 2014 119 7079 7091 10.1002/2014JB011398 

  43. 43. Linde AT Sacks IS Johnston MJS Hillt DP Bilham RG Increased pressure from rising bubbles as a mechanism for remotely triggered seismicity Nature 1994 371 408 410 10.1038/371408a0 

  44. 44. Bower DR Heaton KC Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake of 1964 Can. J. Earth Sci. 1978 15 331 340 10.1139/e78-039 

  45. 45. Zhang Y Fu L-Y Huang F Chen X Coseismic water-level changes in a well induced by teleseismic waves from three large earthquakes Tectonophysics 2015 651-652 232 241 10.1016/j.tecto.2015.02.027 

  46. 46. Allen RM Kanamori H The potential for earthquake earlywarning in Southern California Science 2003 300 786 789 10.1126/science.1080912 12730599 

  47. 47. Cua GB Real­time performance of the Virtual Seismologist earthquake early warning algorithm in Southern California Seismol. Res. Lett. 2009 80 740 747 10.1785/gssrl.80.5.740 

  48. 48. Lancieri M Zollo A A Bayesian approach to the real­time estimation of magnitude from the early P and S wave displacementpeaks J. Geophys. Res. 2008 113 B12302 10.1029/2007JB005386 

  49. 49. Kamigaichi O Earthquake early warning in Japan: Warning the general public and future prospects Seismol. Res. Lett. 2009 80 717 726 10.1785/gssrl.80.5.717 

  50. 50. Espinosa­Aranda, J. M.et al. Mexico City Seismic Alert System. In Proceedings of the International Symposium on Earthquake Disaster Prevention 1 , 315?324 (2000). 

  51. 51. Caprio M Lancieri M Cua GB Zollo A Wiemer S An evolutionary approach to real-time moment magnitude estimation via inversion of displacement spectra Geophys. Res. Lett. 2011 38 L02301 10.1029/2010GL045403 

  52. 52. Muscolino G Palmeri A An earthquake response spectrum method for linear light secondary substructures ISET J. Earthq.Technol 2007 44 193 211 

  53. 53. Convertito V Iervolino I Zollo A Manfredi G Prediction of response spectra via real-time earthquake measurements Soil Dyn. Earthq. Eng 2008 28 492 505 10.1016/j.soildyn.2007.07.006 

  54. 54. Varotsos P Lazaridou M Latest aspects of earthquake prediction in Greece based on seismic electric signals Tectonophysics 1991 188 321 347 10.1016/0040-1951(91)90462-2 

  55. 55. Uyeda, S. Introduction to the VAN method of earthquake prediction. A Critical Review of VAN ( edited by James Lighthill ), 3?28 (1996). 

  56. 56. Varotsos, P. et al. Short term earthquake prediction in Greece by seismic electric signals. A Critical Review of VAN ( edited by James Lighthill ), 29?76 (1996). 

  57. 57. Kim H-J Seismic reflection imaging of quaternary faulting offshore the southeastern Korean Peninsula Geosci. J. 2016 20 311 319 10.1007/s12303-015-0055-9 

  58. 58. Kim K-H Assessing whether the 2017 Mw 5.4 Pohang earthquake in South Korea was an induced event Science 2018 360 1007 1009 10.1126/science.aat6081 29700224 

  59. 59. Lee S-H Groundwater level changes on Jeju Island associated with the Kumamoto and Gyeongju earthquakes Geomat. Nat. Hazards Risk 2017 8 1783 1791 10.1080/19475705.2017.1387181 

  60. 60. Kim JY Groundwater system responses to the 2016 ML 5.8 Gyeongju earthquake, South Korea J. Hydrol. 2019 576 150 163 10.1016/j.jhydrol.2019.06.044 

  61. 61. Won J-H Lee J-Y Kim J-W Koh G-W Groundwater occurrence on Jeju Island, Korea Hydrogeol. J. 2006 14 532 547 10.1007/s10040-005-0447-4 

  62. 62. Hamm S-Y Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea J. Hydrol. 2005 310 111 121 10.1016/j.jhydrol.2004.12.006 

  63. 63. McClellan, J. H., Schafer, R. W. & Yoder, M. A. Signal Processing . 489 pp. (Pearson Publisher, 2016). 

  64. 64. Hwang, H. S. et al . Frequency analysis of groundwater level fluctuations caused by Gyeongju earthquake and predicting possibility of earthquake. In Proceedings of the Korean Society of Engineering Geology 2017 Fall Conference , Nov. 9?10 (2017). 

  65. 65. Lockner DA Beeler NM Rock failure and earthquakes International handbook of earthquake and engineering seismology (edited. by William, H. et al.) 2002 81A 505 537 10.1016/S0074-6142(02)80235-2 

  66. 66. He A Co-seismic response of water level in the Jingle well (China) associated with the Gorkha Nepal (Mw 7.8) earthquake Tectonophysics 2017 714-715 82 89 10.1016/j.tecto.2016.08.019 

  67. 67. Chen CH Anomalous frequency characteristics of groundwater level before major earthquakes in Taiwan Hydrol. Earth Sys. Sci 2013 17 1693 1703 10.5194/hess-17-1693-2013 

  68. 68. Chen C-H Groundwater?strain coupling before the 1999 Mw 7.6 Taiwan Chi-Chi earthquake J. Hydrol. 2015 524 378 384 10.1016/j.jhydrol.2015.03.006 

  69. 69. Kissin IG Grinevsky AO Main features of hydrogeodynamic earthquake precursors Tectonophysics 1990 178 277 286 10.1016/0040-1951(90)90154-Z 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로