$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] TGF-β1-mediated repression of SLC7A11 drives vulnerability to GPX4 inhibition in hepatocellular carcinoma cells 원문보기

Cell death & disease, v.11 no.5, 2020년, pp.406 -   

Kim, Do Hyung (College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea) ,  Kim, Won Dong (Convergence Medicine Research Center, Asan Institute for Life Sciences, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea) ,  Kim, Sang Kyum (College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea) ,  Moon, Dae Hyuk (Department of Nuclear Medicine, Asan Medical Center, University of Ulsan, College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505 Republic of Korea) ,  Lee, Seung Jin (College of Pharmacy, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 Republic of Korea)

Abstract AI-Helper 아이콘AI-Helper

System xc− contributes to glutathione (GSH) synthesis and protects cells against ferroptosis by importing cystine and exchanging it with glutamate. Transforming growth factor β1 (TGF-β1) induces redox imbalance; however, its role in system xc− regulation remains poorly unders...

참고문헌 (38)

  1. 1. Sato H Tamba M Ishii T Bannai S Cloning and expression of a plasma membrane cystine/glutamate exchange transporter composed of two distinct proteins J. Biol. Chem. 1999 274 11455 11458 10.1074/jbc.274.17.11455 10206947 

  2. 2. Hirschhorn T Stockwell BR The development of the concept of ferroptosis Free Radic. Biol. Med. 2019 133 130 143 10.1016/j.freeradbiomed.2018.09.043 30268886 

  3. 3. Gorrini C Harris IS Mak TW Modulation of oxidative stress as an anticancer strategy Nat. Rev. Drug Discov. 2013 12 931 947 10.1038/nrd4002 24287781 

  4. 4. Dixon SJ Ferroptosis: an iron-dependent form of nonapoptotic cell death Cell 2012 149 1060 1072 10.1016/j.cell.2012.03.042 22632970 

  5. 5. Yang WS Regulation of ferroptotic cancer cell death by GPX4 Cell 2014 156 317 331 10.1016/j.cell.2013.12.010 24439385 

  6. 6. Timmerman LA Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target Cancer Cell 2013 24 450 465 10.1016/j.ccr.2013.08.020 24094812 

  7. 7. Viswanathan VS Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway Nature 2017 547 453 457 10.1038/nature23007 28678785 

  8. 8. Guo W Disruption of xCT inhibits cell growth via the ROS/autophagy pathway in hepatocellular carcinoma Cancer Lett. 2011 312 55 61 10.1016/j.canlet.2011.07.024 21906871 

  9. 9. Sugano K Expression of xCT as a predictor of disease recurrence in patients with colorectal cancer Anticancer Res. 2015 35 677 682 25667445 

  10. 10. Takeuchi S Increased xCT expression correlates with tumor invasion and outcome in patients with glioblastomas Neurosurgery 2013 72 33 41 10.1227/NEU.0b013e318276b2de 

  11. 11. Tsuchihashi K The EGF receptor promotes the malignant potential of glioma by regulating amino acid transport system xc(-) Cancer Res. 2016 76 2954 2963 10.1158/0008-5472.CAN-15-2121 26980765 

  12. 12. Ishimoto T CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth Cancer Cell 2011 19 387 400 10.1016/j.ccr.2011.01.038 21397861 

  13. 13. Lien, E. C., Ghisolfi, L., Geck, R. C., Asara, J. M. & Toker, A. Oncogenic PI3K promotes methionine dependency in breast cancer cells through the cystine-glutamate antiporter xCT. Sci. Signal. 10 , 6604 (2017). 

  14. 14. Song X AMPK-mediated BECN1 phosphorylation promotes ferroptosis by directly blocking system Xc(-) activity Curr. Biol. 2018 28 2388 2399.e2385 10.1016/j.cub.2018.05.094 30057310 

  15. 15. Sasaki H Electrophile response element-mediated induction of the cystine/glutamate exchange transporter gene expression J. Biol. Chem. 2002 277 44765 44771 10.1074/jbc.M208704200 12235164 

  16. 16. Sato H Transcriptional control of cystine/glutamate transporter gene by amino acid deprivation Biochem. Biophys. Res. Commun. 2004 325 109 116 10.1016/j.bbrc.2004.10.009 15522208 

  17. 17. Jiang L Ferroptosis as a p53-mediated activity during tumour suppression Nature 2015 520 57 62 10.1038/nature14344 25799988 

  18. 18. Dituri F Mancarella S Cigliano A Chieti A Giannelli G TGF-beta as multifaceted orchestrator in HCC progression: signaling, EMT, immune microenvironment, and novel therapeutic perspectives Semin. Liver Dis. 2019 39 53 69 10.1055/s-0038-1676121 30586675 

  19. 19. Liu RM Desai LP Reciprocal regulation of TGF-beta and reactive oxygen species: a perverse cycle for fibrosis Redox Biol. 2015 6 565 577 10.1016/j.redox.2015.09.009 26496488 

  20. 20. Carmona-Cuenca I Upregulation of the NADPH oxidase NOX4 by TGF-beta in hepatocytes is required for its pro-apoptotic activity J. Hepatol. 2008 49 965 976 10.1016/j.jhep.2008.07.021 18845355 

  21. 21. Crosas-Molist E The NADPH oxidase NOX4 inhibits hepatocyte proliferation and liver cancer progression Free Radic. Biol. Med. 2014 69 338 347 10.1016/j.freeradbiomed.2014.01.040 24509161 

  22. 22. Senturk S Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth Hepatology 2010 52 966 974 10.1002/hep.23769 20583212 

  23. 23. Caja L Sancho P Bertran E Fabregat I Dissecting the effect of targeting the epidermal growth factor receptor on TGF-beta-induced-apoptosis in human hepatocellular carcinoma cells J. Hepatol. 2011 55 351 358 10.1016/j.jhep.2010.10.041 21147185 

  24. 24. Coulouarn C Factor VM Thorgeirsson SS Transforming growth factor-beta gene expression signature in mouse hepatocytes predicts clinical outcome in human cancer Hepatology 2008 47 2059 2067 10.1002/hep.22283 18506891 

  25. 25. Dzieran J Comparative analysis of TGF-beta/Smad signaling dependent cytostasis in human hepatocellular carcinoma cell lines PLoS One 2013 8 e72252 10.1371/journal.pone.0072252 23991075 

  26. 26. Neuzillet C Targeting the TGFbeta pathway for cancer therapy Pharmacol. Ther. 2015 147 22 31 10.1016/j.pharmthera.2014.11.001 25444759 

  27. 27. Zhao Y Hu X Liu Y Dong S Shi M ROS signaling under metabolic stress: cross-talk between AMPK and AKT pathway Mol. Cancer 2017 16 79 10.1186/s12943-017-0648-1 28407774 

  28. 28. Takimoto T Smad2 and Smad3 are redundantly essential for the TGF-beta-mediated regulation of regulatory T plasticity and Th1 development J. Immunol. 2010 185 842 855 10.4049/jimmunol.0904100 20548029 

  29. 29. Frederick JP Liberati NT Waddell DS Shi Y Wang XF Transforming growth factor beta-mediated transcriptional repression of c-myc is dependent on direct binding of Smad3 to a novel repressive Smad binding element Mol. Cell Biol. 2004 24 2546 2559 10.1128/MCB.24.6.2546-2559.2004 14993291 

  30. 30. Park BV TGFbeta1-mediated SMAD3 enhances PD-1 expression on antigen-specific T cells in cancer Cancer Discov. 2016 6 1366 1381 10.1158/2159-8290.CD-15-1347 27683557 

  31. 31. Isogaya K A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression Cell Res. 2014 24 994 1008 10.1038/cr.2014.97 25060702 

  32. 32. Geng L Chaudhuri A Talmon G Wisecarver JL Wang J TGF-Beta suppresses VEGFA-mediated angiogenesis in colon cancer metastasis PLoS One 2013 8 e59918 10.1371/journal.pone.0059918 23536895 

  33. 33. Datto MB Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism Proc. Natl Acad. Sci. USA 1995 92 5545 5549 10.1073/pnas.92.12.5545 7777546 

  34. 34. Spender LC TGF-beta induces apoptosis in human B cells by transcriptional regulation of BIK and BCL-XL Cell Death Differ. 2009 16 593 602 10.1038/cdd.2008.183 19136942 

  35. 35. Lin TH High serum transforming growth factor-β1 levels predict outcome in hepatocellular carcinoma patients treated with sorafenib Clin. Cancer Res. 2015 21 3678 3684 10.1158/1078-0432.CCR-14-1954 25977342 

  36. 36. Chen J Analysis of genomes and transcriptomes of hepatocellular carcinomas identifies mutations and gene expression changes in the transforming growth factor-β pathway Gastroenterology 2018 154 195 210 10.1053/j.gastro.2017.09.007 28918914 

  37. 37. Jang HY Schedule-dependent synergistic effects of 5-fluorouracil and selumetinib in KRAS or BRAF mutant colon cancer models Biochem. Pharmacol. 2019 160 110 120 10.1016/j.bcp.2018.12.017 30579838 

  38. 38. Chou TC Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies Pharmacol. Rev. 2006 58 621 681 10.1124/pr.58.3.10 16968952 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로