최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE transactions on communications, v.68 no.4, 2020년, pp.2143 - 2155
Kim, Wonjun (Institute of New Media and Communications, Seoul National University, Seoul, South Korea) , Ahn, Yongjun (Institute of New Media and Communications, Seoul National University, Seoul, South Korea) , Shim, Byonghyo (Institute of New Media and Communications, Seoul National University, Seoul, South Korea)
As a means to support the access of massive machine-type communication devices, grant-free access and non-orthogonal multiple access (NOMA) have received great deal of attention in recent years. In the grant-free transmission, each device transmits information without the granting process so that th...
LTE-The UMTS Long Term Evolution from Theory to Practice sesia 2012
Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) Requirements for LTE Pico Node B 2011
Jian Wang, Seokbeop Kwon, Byonghyo Shim. Generalized Orthogonal Matching Pursuit. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.60, no.12, 6202-6216.
Linear least squares computations farebrother 1988
arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014
Lyu, Shanxiang, Ling, Cong. Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.67, no.1, 178-193.
Du, Yang, Dong, Binhong, Zhu, Wuyong, Gao, Pengyu, Chen, Zhi, Wang, Xiaodong, Fang, Jun. Joint Channel Estimation and Multiuser Detection for Uplink Grant-Free NOMA. IEEE wireless communications letters, vol.7, no.4, 682-685.
Ahn, Jinyoup, Shim, Byonghyo, Lee, Kwang Bok. EP-Based Joint Active User Detection and Channel Estimation for Massive Machine-Type Communications. IEEE transactions on communications, vol.67, no.7, 5178-5189.
Jun Won Choi, Byonghyo Shim, Yacong Ding, Rao, Bhaskar, Dong In Kim. Compressed Sensing for Wireless Communications: Useful Tips and Tricks. IEEE Communications surveys and tutorials, vol.19, no.3, 1527-1550.
Proc Adv Neural Inf Process Syst (NIPS) ImageNet classification with deep convolutional neural networks krizhevsky 2012 1097
Proc Adv Neural Inf Process Syst (NIPS) Sequence to sequence learning with neural networks sutskever 2014 3104
Nature Mastering the game of Go with deep neural networks and tree search silver 2016 10.1038/nature16961 529 484
Cui, Wei, Shen, Kaiming, Yu, Wei. Spatial Deep Learning for Wireless Scheduling. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.37, no.6, 1248-1261.
arXiv 1910 06529 Grant-free non-orthogonal multiple access for IoT: A survey shahab 2019
Gui, Guan, Huang, Hongji, Song, Yiwei, Sari, Hikmet. Deep Learning for an Effective Nonorthogonal Multiple Access Scheme. IEEE transactions on vehicular technology, vol.67, no.9, 8440-8450.
J Mach Learn Res Dropout: A simple way to prevent neural networks from overfitiing srivastava 2014 15 1929
Bockelmann, Carsten, Pratas, Nuno, Nikopour, Hosein, Au, Kelvin, Svensson, Tommy, Stefanovic, Cedomir, Popovski, Petar, Dekorsy, Armin. Massive machine-type communications in 5g: physical and MAC-layer solutions. IEEE communications magazine, vol.54, no.9, 59-65.
Proc Int Conf Mach Learn (ICML) Rectified linear units improve restricted boltzmann machines nair 2010 807
Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC) User Equipment (UE) Conformance Specification Part 1 Protocol Conformance Specification 2017
Study on New Radio (NR) Access Technology Physical Layer Aspects (Release 14) 2017
Proc Adv Neural Inf Process Syst (NIPS) Neural network ensembles, cross validation, and active learning krogh 1995 231
Taleb, Tarik, Kunz, Andreas. Machine type communications in 3GPP networks: potential, challenges, and solutions. IEEE communications magazine, vol.50, no.3, 178-184.
Donoho, David L., Maleki, Arian, Montanari, Andrea. Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.45, 18914-18919.
Dai, Linglong, Wang, Bichai, Yuan, Yifei, Han, Shuangfeng, Chih-lin, I., Wang, Zhaocheng. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE communications magazine, vol.53, no.9, 74-81.
IMT vision—Framework and overall objectives of the future development of IMT for 2020 and beyond 2015
Hornik, K., Stinchcombe, M., White, H.. Multilayer feedforward networks are universal approximators. Neural networks : the official journal of the International Neural Network Society, vol.2, no.5, 359-366.
Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.. Model-Based Compressive Sensing. IEEE transactions on information theory, vol.56, no.4, 1982-2001.
Hoshyar, R., Wathan, F.P., Tafazolli, R.. Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.56, no.4, 1616-1626.
Study on Non-Orthogonal Multiple Access (NOMA) for NR 2018
arXiv 1502 03167 Batch normalization: Accelerating deep network training by reducing internal covariate shift ioffe 2015
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.