$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Deep Neural Network-Based Active User Detection for Grant-Free NOMA Systems 원문보기

IEEE transactions on communications, v.68 no.4, 2020년, pp.2143 - 2155  

Kim, Wonjun (Institute of New Media and Communications, Seoul National University, Seoul, South Korea) ,  Ahn, Yongjun (Institute of New Media and Communications, Seoul National University, Seoul, South Korea) ,  Shim, Byonghyo (Institute of New Media and Communications, Seoul National University, Seoul, South Korea)

Abstract AI-Helper 아이콘AI-Helper

As a means to support the access of massive machine-type communication devices, grant-free access and non-orthogonal multiple access (NOMA) have received great deal of attention in recent years. In the grant-free transmission, each device transmits information without the granting process so that th...

참고문헌 (37)

  1. 10.1109/SPAWC.2017.8227673 

  2. LTE-The UMTS Long Term Evolution from Theory to Practice sesia 2012 

  3. Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Frequency (RF) Requirements for LTE Pico Node B 2011 

  4. Jian Wang, Seokbeop Kwon, Byonghyo Shim. Generalized Orthogonal Matching Pursuit. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.60, no.12, 6202-6216.

  5. Linear least squares computations farebrother 1988 

  6. 10.1017/CBO9780511804441 

  7. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  8. Lyu, Shanxiang, Ling, Cong. Hybrid Vector Perturbation Precoding: The Blessing of Approximate Message Passing. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.67, no.1, 178-193.

  9. Du, Yang, Dong, Binhong, Zhu, Wuyong, Gao, Pengyu, Chen, Zhi, Wang, Xiaodong, Fang, Jun. Joint Channel Estimation and Multiuser Detection for Uplink Grant-Free NOMA. IEEE wireless communications letters, vol.7, no.4, 682-685.

  10. Ahn, Jinyoup, Shim, Byonghyo, Lee, Kwang Bok. EP-Based Joint Active User Detection and Channel Estimation for Massive Machine-Type Communications. IEEE transactions on communications, vol.67, no.7, 5178-5189.

  11. Jun Won Choi, Byonghyo Shim, Yacong Ding, Rao, Bhaskar, Dong In Kim. Compressed Sensing for Wireless Communications: Useful Tips and Tricks. IEEE Communications surveys and tutorials, vol.19, no.3, 1527-1550.

  12. Proc Adv Neural Inf Process Syst (NIPS) ImageNet classification with deep convolutional neural networks krizhevsky 2012 1097 

  13. Proc Adv Neural Inf Process Syst (NIPS) Sequence to sequence learning with neural networks sutskever 2014 3104 

  14. 10.1109/ICASSP.2013.6638947 

  15. Nature Mastering the game of Go with deep neural networks and tree search silver 2016 10.1038/nature16961 529 484 

  16. Cui, Wei, Shen, Kaiming, Yu, Wei. Spatial Deep Learning for Wireless Scheduling. IEEE journal on selected areas in communications : a publication of the IEEE Communications Society, vol.37, no.6, 1248-1261.

  17. arXiv 1910 06529 Grant-free non-orthogonal multiple access for IoT: A survey shahab 2019 

  18. Gui, Guan, Huang, Hongji, Song, Yiwei, Sari, Hikmet. Deep Learning for an Effective Nonorthogonal Multiple Access Scheme. IEEE transactions on vehicular technology, vol.67, no.9, 8440-8450.

  19. J Mach Learn Res Dropout: A simple way to prevent neural networks from overfitiing srivastava 2014 15 1929 

  20. Bockelmann, Carsten, Pratas, Nuno, Nikopour, Hosein, Au, Kelvin, Svensson, Tommy, Stefanovic, Cedomir, Popovski, Petar, Dekorsy, Armin. Massive machine-type communications in 5g: physical and MAC-layer solutions. IEEE communications magazine, vol.54, no.9, 59-65.

  21. Proc Int Conf Mach Learn (ICML) Rectified linear units improve restricted boltzmann machines nair 2010 807 

  22. Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC) User Equipment (UE) Conformance Specification Part 1 Protocol Conformance Specification 2017 

  23. Study on New Radio (NR) Access Technology Physical Layer Aspects (Release 14) 2017 

  24. Proc Adv Neural Inf Process Syst (NIPS) Neural network ensembles, cross validation, and active learning krogh 1995 231 

  25. Taleb, Tarik, Kunz, Andreas. Machine type communications in 3GPP networks: potential, challenges, and solutions. IEEE communications magazine, vol.50, no.3, 178-184.

  26. Donoho, David L., Maleki, Arian, Montanari, Andrea. Message-passing algorithms for compressed sensing. Proceedings of the National Academy of Sciences of the United States of America, vol.106, no.45, 18914-18919.

  27. Dai, Linglong, Wang, Bichai, Yuan, Yifei, Han, Shuangfeng, Chih-lin, I., Wang, Zhaocheng. Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends. IEEE communications magazine, vol.53, no.9, 74-81.

  28. IMT vision—Framework and overall objectives of the future development of IMT for 2020 and beyond 2015 

  29. 10.1109/IWCMC.2019.8766685 

  30. 10.1109/ICC.2019.8761407 

  31. Hornik, K., Stinchcombe, M., White, H.. Multilayer feedforward networks are universal approximators. Neural networks : the official journal of the International Neural Network Society, vol.2, no.5, 359-366.

  32. Baraniuk, R.G., Cevher, V., Duarte, M.F., Hegde, C.. Model-Based Compressive Sensing. IEEE transactions on information theory, vol.56, no.4, 1982-2001.

  33. Hoshyar, R., Wathan, F.P., Tafazolli, R.. Novel Low-Density Signature for Synchronous CDMA Systems Over AWGN Channel. IEEE transactions on signal processing : a publication of the IEEE Signal Processing Society, vol.56, no.4, 1616-1626.

  34. 10.1109/CVPR.2017.243 

  35. Study on Non-Orthogonal Multiple Access (NOMA) for NR 2018 

  36. 10.1109/CVPR.2016.90 

  37. arXiv 1502 03167 Batch normalization: Accelerating deep network training by reducing internal covariate shift ioffe 2015 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로