최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기IEEE robotics and automation letters, v.5 no.4, 2020년, pp.5597 - 5604
Kim, Taewoo (Mechanical Engineering, Visual Intelligence Lab, KAIST, Daejeon, South Korea) , Ryu, Kwonyoung (Mechanical Engineering, Visual Intelligence Lab, KAIST, Daejeon, South Korea) , Song, Kyeongseob (Mechanical Engineering, Visual Intelligence Lab, KAIST, Daejeon, South Korea) , Yoon, Kuk-Jin (Mechanical Engineering, Visual Intelligence Lab, KAIST, Daejeon, South Korea)
Most of existing deep learning-based depth and optical flow estimation methods require the supervision of a lot of ground truth data, and hardly generalize to video frames, resulting in temporal inconsistency. In this letter, we propose a joint framework that estimates disparity and optical flow of ...
Self-supervised learning for stereo matching with self-improving ability zhong 2017
Scharstein, D., Hirschmuller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.. High-Resolution Stereo Datasets with Subpixel-Accurate Ground Truth. Lecture notes in computer science, vol.8753, 31-42.
A large RGB-D dataset for semi-supervised monocular depth estimation cho 2019
Geiger, A, Lenz, P, Stiller, C, Urtasun, R. Vision meets robotics: The KITTI dataset. The International journal of robotics research, vol.32, no.11, 1231-1237.
Proc Assoc Advance Artif Intell Unsupervised deep learning for optical flow estimation ren 0 1495
Chen, Long, Tang, Wen, Wan, Tao Ruan, John, Nigel W.. Self-supervised monocular image depth learning and confidence estimation. Neurocomputing, vol.381, 272-281.
Proc Assoc Advance Artif Intell Unflow: Unsupervised learning of optical flow with a bidirectional census loss meister 0
Every pixel counts++: Joint learning of geometry and motion with 3D holistic understanding luo 2018
Proc Eur Conf Comput Vision Back to basics: Unsupervised learning of optical flow via brightness constancy and motion smoothness jason 0 3
Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.
J Mach Learn Res Stereo matching by training a convolutional neural network to compare image patches zbontar 2016 17 2
Proc Conf on Neu Inf Proc Syst Convolutional LSTM network: A machine learning approach for precipitation nowcasting shi 0 802
Vogel, C., Roth, S., Schindler, K.. View-Consistent 3D Scene Flow Estimation over Multiple Frames. Lecture notes in computer science, vol.8692, 263-278.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.