$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] D3PointNet: Dual-Level Defect Detection PointNet for Solder Paste Printer in Surface Mount Technology 원문보기

IEEE access : practical research, open solutions, v.8, 2020년, pp.140310 - 140322  

Park, Jin-Man (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Yoo, Yong-Ho (Kohyoung Technology, Inc., Seoul, South Korea) ,  Kim, Ue-Hwan (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Lee, Dukyoung (Kohyoung Technology, Inc., Seoul, South Korea) ,  Kim, Jong-Hwan (School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

In the field of surface mount technology (SMT), early detection of defects in production machines is crucial to prevent yield reduction. In order to detect defects in the production machine without attaching additional costly sensors, attempts have been made to classify defects in solder paste print...

참고문헌 (32)

  1. He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, Sun, Jian. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition. IEEE transactions on pattern analysis and machine intelligence, vol.37, no.9, 1904-1916.

  2. Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., Fei-Fei, Li. ImageNet Large Scale Visual Recognition Challenge. International journal of computer vision, vol.115, no.3, 211-252.

  3. arXiv 1412 6980 Adam: A method for stochastic optimization kingma 2014 

  4. Proc World Congr Eng Detection of bare PCB defects by image subtraction method using machine vision chauhan 2011 2 6 

  5. Zhang, Linlin, Jin, Yongqing, Yang, Xuesong, Li, Xia, Duan, Xiaodong, Sun, Yuan, Liu, Hong. Convolutional neural network‐based multi‐label classification of PCB defects. Journal of engineering : JoE, vol.2018, no.16, 1612-1616.

  6. Wei, Peng, Liu, Chang, Liu, Mengyuan, Gao, Yunlong, Liu, Hong. CNN‐based reference comparison method for classifying bare PCB defects. Journal of engineering : JoE, vol.2018, no.16, 1528-1533.

  7. Wei-Chien Wang, Shang-Liang Chen, Liang-Bi Chen, Wan-Jung Chang. A Machine Vision Based Automatic Optical Inspection System for Measuring Drilling Quality of Printed Circuit Boards. IEEE access : practical research, open solutions, vol.5, 10817-10833.

  8. Li, Dejian, Li, Shaoli, Yuan, Weiqi. Flexible Printed Circuit Fracture Detection Based on Hypothesis Testing Strategy. IEEE access : practical research, open solutions, vol.8, 24457-24470.

  9. Ramalingam, Vimal Samsingh, Kanagasabai, Malathi, Sundarsingh, Esther Florence. Transit Time Dependent Condition Monitoring of PCBs During Testing for Diagnostics in Electronics Industry. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.65, no.1, 553-560.

  10. Hui, Tak-Wai, Pang, Grantham Kwok-Hung. Solder paste inspection using region-based defect detection. International journal of advanced manufacturing technology, vol.42, no.7, 725-734.

  11. Benedek, C., Krammer, O., Janoczki, M., Jakab, L.. Solder Paste Scooping Detection by Multilevel Visual Inspection of Printed Circuit Boards. IEEE transactions on industrial electronics : a publication of the IEEE Industrial Electronics Society, vol.60, no.6, 2318-2331.

  12. Jinjin Li, Bennett, Bonnie L., Karam, Lina J., Pettinato, Jeff S.. Stereo Vision Based Automated Solder Ball Height and Substrate Coplanarity Inspection. IEEE transactions on automation science and engineering, vol.13, no.2, 757-771.

  13. Chee Wai Mak, Afzulpurkar, Nitin V., Dailey, Matthew N., Saram, Philip B.. A Bayesian Approach to Automated Optical Inspection for Solder Jet Ball Joint Defects in the Head Gimbal Assembly Process. IEEE transactions on automation science and engineering, vol.11, no.4, 1155-1162.

  14. A literature survey on algorithms for multi-label learning sorower 2010 18 1 

  15. Park, Ju-Youn, Hwang, Yewon, Lee, Dukyoung, Kim, Jong-Hwan. MarsNet: Multi-Label Classification Network for Images of Various Sizes. IEEE access : practical research, open solutions, vol.8, 21832-21846.

  16. 10.1109/CVPR.2018.00979 

  17. Oh, Dong Yul, Yun, Il Dong. Residual Error Based Anomaly Detection Using Auto-Encoder in SMD Machine Sound. Sensors, vol.18, no.5, 1308-.

  18. 10.1109/CVPR.2016.90 

  19. 10.1109/CVPR.2016.251 

  20. Proc 31st AAAI Conf Artif Intell Inception-v4, inception-resnet and the impact of residual connections on learning szegedy 2017 4278 

  21. Proc Adv Neural Inf Process Syst Learning multiple tasks with multilinear relationship networks long 2017 1594 

  22. 10.1109/CVPR.2017.75 

  23. 10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00034 

  24. 10.1109/CVPR.2018.00781 

  25. Surface Mount Technology Principles and Practice prasad 2013 

  26. Acciani, G., Brunetti, G., Fornarelli, G.. Application of neural networks in optical inspection and classification of solder joints in surface mount technology. IEEE transactions on industrial informatics, vol.2, no.3, 200-209.

  27. Cai, Nian, Cen, Guandong, Wu, Jixiu, Li, Feiyang, Wang, Han, Chen, Xindu. SMT Solder Joint Inspection via a Novel Cascaded Convolutional Neural Network. IEEE transactions on components, packaging, and manufacturing technology, vol.8, no.4, 670-677.

  28. 10.1109/CCCS.2018.8586818 

  29. 10.1109/ICCVW.2017.369 

  30. 10.1109/ICCV.2015.114 

  31. Proc Adv Neural Inf Process Syst Pointnet++: Deep hierarchical feature learning on point sets in a metric space qi 2017 5099 

  32. 10.1109/CVPR.2017.16 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로