$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Exploring the Structural and Strategic Bases of Autism Spectrum Disorders With Deep Learning 원문보기

IEEE access : practical research, open solutions, v.8, 2020년, pp.153341 - 153352  

Ke, Fengkai (Hubei Key Laboratory of Modern Manufacturing Quality Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, China) ,  Choi, Seungjin (Department of Psychiatry, Severance Children’s Hospital, Division of Child and Adolescent Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea) ,  Kang, Young Ho (Brain and Cognitive Engineering Program, Korea Advanced Institute of Science Technology (KAIST), Daejeon, South Korea) ,  Cheon, Keun-Ah (Department of Psychiatry, Severance Children’s Hospital, Division of Child and Adolescent Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea) ,  Lee, Sang Wan (Department of Bio and Brain Engineering, Brain and Cognitive Engineering Program, Center for Neuroscience-inspired AI, KI for Health Science Technology, KI for Artificial Intelligence, Korea Advanced Institute of Science Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Deep learning models are applied in clinical research in order to diagnose disease. However, diagnosing autism spectrum disorders (ASD) remains challenging due to its complex psychiatric symptoms as well as a generally insufficient amount of neurobiological evidence. We investigated the structural a...

참고문헌 (58)

  1. Gori, Ilaria, Giuliano, Alessia, Muratori, Filippo, Saviozzi, Irene, Oliva, Piernicola, Tancredi, Raffaella, Cosenza, Angela, Tosetti, Michela, Calderoni, Sara, Retico, Alessandra. Gray Matter Alterations in Young Children with Autism Spectrum Disorders: Comparing Morphometry at the Voxel and Regional Level. Journal of neuroimaging : official journal of the American Society of Neuroimaging, vol.25, no.6, 866-874.

  2. Ecker, Christine, Marquand, Andre, Mourão-Miranda, Janaina, Johnston, Patrick, Daly, Eileen M., Brammer, Michael J., Maltezos, Stefanos, Murphy, Clodagh M., Robertson, Dene, Williams, Steven C., Murphy, Declan G. M.. Describing the Brain in Autism in Five Dimensions-Magnetic Resonance Imaging-Assisted Diagnosis of Autism Spectrum Disorder Using a Multiparameter Classification Approach. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.30, no.32, 10612-10623.

  3. Wing, Lorna. The autistic spectrum. The Lancet, vol.350, no.9093, 1761-1766.

  4. Minshew, N.J., Payton, J.B.. New perspectives in autism. Part 2: the differential diagnosis and neurobiology of autism. Current problems in pediatrics, vol.18, no.11, 618-694.

  5. Kim, J., Calhoun, V.D., Shim, E., Lee, J.H.. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia. NeuroImage, vol.124, no.1, 127-146.

  6. Suk, Heung-Il, Lee, Seong-Whan, Shen, Dinggang. Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain structure and function, vol.220, no.2, 841-859.

  7. Segovia, Fermín, Holt, Rosemary, Spencer, Michael, Górriz, Juan M., Ramírez, Javier, Puntonet, Carlos G., Phillips, Christophe, Chura, Lindsay, Baron-Cohen, Simon, Suckling, John. Identifying endophenotypes of autism: a multivariate approach. Frontiers in computational neuroscience, vol.8, 60-.

  8. the MRC AIMS Consortium, Ecker, C., Rocha-Rego, V., Johnston, P., Mourao-Miranda, J., Marquand, A., Daly, E.M., Brammer, M.J., Murphy, C., Murphy, D.G.. Investigating the predictive value of whole-brain structural MR scans in autism: A pattern classification approach. NeuroImage, vol.49, no.1, 44-56.

  9. Jiao, Y., Chen, R., Ke, X., Chu, K., Lu, Z., Herskovits, E.H.. Predictive models of autism spectrum disorder based on brain regional cortical thickness. NeuroImage, vol.50, no.2, 589-599.

  10. Akshoomoff, Natacha, Lord, Catherine, Lincoln, Alan J., Courchesne, Rachel Y., Carper, Ruth A., Townsend, Jeanne, Courchesne, Eric. Outcome Classification of Preschool Children With Autism Spectrum Disorders Using MRI Brain Measures. Journal of the American Academy of Child and Adolescent Psychiatry, vol.43, no.3, 349-357.

  11. Shen, Dinggang, Wu, Guorong, Suk, Heung-Il. Deep Learning in Medical Image Analysis. Annual review of biomedical engineering, vol.19, 221-248.

  12. Proc Adv Neural Inf Process Syst Joint training of a convolutional network and a graphical model for human pose estimation tompson 2014 25 1799 

  13. Proc IEEE 11th Int Symp Biomed Imag (ISBI) Early diagnosis of Alzheimer’s disease with deep learning liu 2014 1015 

  14. Baio, Jon, Wiggins, Lisa, Christensen, Deborah L., Maenner, Matthew J, Daniels, Julie, Warren, Zachary, Kurzius-Spencer, Margaret, Zahorodny, Walter, Robinson Rosenberg, Cordelia, White, Tiffany, Durkin, Maureen S., Imm, Pamela, Nikolaou, Loizos, Yeargin-Allsopp, Marshalyn, Lee, Li-Ching, Harrington, Rebecca, Lopez, Maya, Fitzgerald, Robert T., Hewitt, Amy, Pettygrove, Sydney, Constantino, John N., Vehorn, Alison, Shenouda, Josephine, Hall-Lande, Jennifer, Van Naarden Braun, Kim, Dowling, Nicole F.. Prevalence of Autism Spectrum Disorder Among Children Aged 8 Years — Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWR. Morbidity and mortality weekly report. Surveillance summaries / Surveillance summaries, vol.67, no.6, 1-23.

  15. Khowaja, Kamran, Banire, Bilikis, Al-Thani, Dena, Sqalli, Mohammed Tahri, Aqle, Aboubakr, Shah, Asadullah, Salim, Siti Salwah. Augmented Reality for Learning of Children and Adolescents With Autism Spectrum Disorder (ASD): A Systematic Review. IEEE access : practical research, open solutions, vol.8, 78779-78807.

  16. Shimizu, Yu, Yoshimoto, Junichiro, Toki, Shigeru, Takamura, Masahiro, Yoshimura, Shinpei, Okamoto, Yasumasa, Yamawaki, Shigeto, Doya, Kenji. Toward Probabilistic Diagnosis and Understanding of Depression Based on Functional MRI Data Analysis with Logistic Group LASSO. PloS one, vol.10, no.5, e0123524-.

  17. Hinton, G., Li Deng, Dong Yu, Dahl, G. E., Mohamed, A., Jaitly, N., Senior, Andrew, Vanhoucke, V., Nguyen, P., Sainath, T. N., Kingsbury, B.. Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups. IEEE signal processing magazine, vol.29, no.6, 82-97.

  18. Patel, Meenal J., Andreescu, Carmen, Price, Julie C., Edelman, Kathryn L., Reynolds III, Charles F., Aizenstein, Howard J.. Machine learning approaches for integrating clinical and imaging features in late‐life depression classification and response prediction. International journal of geriatric psychiatry, vol.30, no.10, 1056-1067.

  19. Comput Sci On using very large target vocabulary for neural machine translation jean 2014 

  20. 10.1109/ICASSP.2013.6639347 

  21. Proc NIPS ImageNet classification with deep convolutional neural networks krizhevsky 2012 25 1097 

  22. Proc Adv Neural Inf Process Syst Sequence to sequence learning with neural networks ilya 2014 3104 

  23. 10.1109/BHI.2019.8834653 

  24. Di Martino, Adriana, Yan, Chao-Gan, Li, Qingyang, Denio, Erin, Castellanos, Francisco X., Alaerts, Kaat, Anderson, Jeffrey S., Assaf, Michal, Bookheimer, Susan Y., Dapretto, Mirella, Deen, Ben, Delmonte, Sonja, Dinstein, Ilan, Ertl-Wagner, Birgit, Fair, Damien A., Gallagher, Louise, Kennedy, Daniel P., Keown, Christopher L., Keysers, Christian, Lainhart, Janet E., Lord, Catherine, Luna, Beatriz, Menon, Vinod, Minshew, Nancy, Monk, Christopher S., Mueller, Sophia, Müller, Ralph-Axel, Nebel, Mary Beth, Nigg, Joel T., O’Hearn, Kirsten, Pelphrey, Kevin A., Peltier, Scott J., Rudie, Jeffrey D., Sunaert, Stefan, Thioux, Marc, Tyszka, J. Michael, Uddin, Lucina Q., Verhoeven, Judith S., Wenderoth, Nicole, Wiggins, Jillian L., Mostofsky, Stewart H., Milham, Michael P.. The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism. Molecular psychiatry, vol.19, no.6, 659-667.

  25. Data Science Journal A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei pauli 2018 5 

  26. Advances in neural information processing systems Recurrent models of visual attention mnih 2014 2204 

  27. 10.1109/CVPR.2016.319 

  28. Kamnitsas, Konstantinos, Ledig, Christian, Newcombe, Virginia F.J., Simpson, Joanna P., Kane, Andrew D., Menon, David K., Rueckert, Daniel, Glocker, Ben. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Medical image analysis, vol.36, 61-78.

  29. Proc Adv Neural Inf Process Syst Spatial transformer networks jaderberg 2015 28 2017 

  30. Fonov, VS, Evans, AC, McKinstry, RC, Almli, CR, Collins, DL. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage, vol.47, no.suppl1, S102-S102.

  31. SPM8 manual the FIL methods group (and honorary members) ashburner 2013 

  32. Calhoun, V.D., Adali, T., Giuliani, N.R., Pekar, J.J., Kiehl, K.A., Pearlson, G.D.. Method for multimodal analysis of independent source differences in schizophrenia: Combining gray matter structural and auditory oddball functional data. Human brain mapping, vol.27, no.1, 47-62.

  33. Wolfers, T., Buitelaar, J.K., Beckmann, C.F., Franke, B., Marquand, A.F.. From estimating activation locality to predicting disorder: A review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neuroscience and biobehavioral reviews, vol.57, 328-349.

  34. Demirci, Oguz, Clark, Vincent P., Magnotta, Vincent A., Andreasen, Nancy C., Lauriello, John, Kiehl, Kent A., Pearlson, Godfrey D., Calhoun, Vince D.. A Review of Challenges in the Use of fMRI for Disease Classification / Characterization and A Projection Pursuit Application from A Multi-site fMRI Schizophrenia Study. Brain imaging and behavior, vol.2, no.3, 207-226.

  35. Oliveira Jr., Pedro Paulo de Magalhães, Nitrini, Ricardo, Busatto, Geraldo, Buchpiguel, Carlos, Sato, João Ricardo, Amaro Jr., Edson. Use of SVM Methods with Surface-Based Cortical and Volumetric Subcortical Measurements to Detect Alzheimer's Disease. Journal of Alzheimer's disease, vol.19, no.4, 1263-1272.

  36. Comput Math Methods Med Discrimination between Alzheimer’s disease and mild cognitive impairment using SOM and PSO-SVM yang 2013 2013 1 

  37. Plant, Claudia, Teipel, Stefan J., Oswald, Annahita, Böhm, Christian, Meindl, Thomas, Mourao-Miranda, Janaina, Bokde, Arun W., Hampel, Harald, Ewers, Michael. Automated detection of brain atrophy patterns based on MRI for the prediction of Alzheimer's disease. NeuroImage, vol.50, no.1, 162-174.

  38. Sabuncu, M. R., Van Leemput, K.. The Relevance Voxel Machine (RVoxM): A Self-Tuning Bayesian Model for Informative Image-Based Prediction. IEEE transactions on medical imaging, vol.31, no.12, 2290-2306.

  39. Koch, Stefan P., Hägele, Claudia, Haynes, John-Dylan, Heinz, Andreas, Schlagenhauf, Florian, Sterzer, Philipp. Diagnostic Classification of Schizophrenia Patients on the Basis of Regional Reward-Related fMRI Signal Patterns. PloS one, vol.10, no.3, e0119089-.

  40. Bleich-Cohen, M., Jamshy, S., Sharon, H., Weizman, R., Intrator, N., Poyurovsky, M., Hendler, T.. Machine learning fMRI classifier delineates subgroups of schizophrenia patients. Schizophrenia research, vol.160, no.1, 196-200.

  41. Park, Mee Young, Hastie, Trevor. L1-regularization path algorithm for generalized linear models. Journal of the Royal Statistical Society Series B, Statistical methodology, vol.69, no.4, 659-677.

  42. Johnston, Blair A., Mwangi, Benson, Matthews, Keith, Coghill, David, Konrad, Kerstin, Steele, J. Douglas. Brainstem abnormalities in attention deficit hyperactivity disorder support high accuracy individual diagnostic classification. Human brain mapping, vol.35, no.10, 5179-5189.

  43. Mostafa, Sakib, Tang, Lingkai, Wu, Fang-Xiang. Diagnosis of Autism Spectrum Disorder Based on Eigenvalues of Brain Networks. IEEE access : practical research, open solutions, vol.7, 128474-128486.

  44. Kim, Young Shin, Leventhal, Bennett L., Koh, Yun-Joo, Fombonne, Eric, Laska, Eugene, Lim, Eun-Chung, Cheon, Keun-Ah, Kim, Soo-Jeong, Kim, Young-Key, Lee, HyunKyung, Song, Dong-Ho, Grinker, Roy Richard. Prevalence of Autism Spectrum Disorders in a Total Population Sample. The American journal of psychiatry, vol.168, no.9, 904-912.

  45. Wang, Canhua, Xiao, Zhiyong, Wang, Baoyu, Wu, Jianhua. Identification of Autism Based on SVM-RFE and Stacked Sparse Auto-Encoder. IEEE access : practical research, open solutions, vol.7, 118030-118036.

  46. Ecker, C., Bookheimer, S.Y., Murphy, D.G.M.. Neuroimaging in autism spectrum disorder: brain structure and function across the lifespan. The Lancet. Neurology, vol.14, no.11, 1121-1134.

  47. Akter, Tania, Shahriare Satu, Md., Khan, Md. Imran, Ali, Mohammad Hanif, Uddin, Shahadat, Lió, Pietro, Quinn, Julian M. W., Moni, Mohammad Ali. Machine Learning-Based Models for Early Stage Detection of Autism Spectrum Disorders. IEEE access : practical research, open solutions, vol.7, 166509-166527.

  48. Fan, Geng, Chen, Yuhao, Chen, Yanni, Yang, Ming, Wang, Jue, Li, Chenxi, Li, Youjun, Liu, Tian. Abnormal Brain Regions in Two-Group Cross-Location Dynamics Model of Autism. IEEE access : practical research, open solutions, vol.8, 94526-94534.

  49. 10.1109/IJCNN.2019.8852002 

  50. Arbabshirani, Mohammad R., Plis, Sergey, Sui, Jing, Calhoun, Vince D.. Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls. NeuroImage, vol.145, no.2, 137-165.

  51. Craddock, R. Cameron, James, G.Andrew, Holtzheimer III, Paul E., Hu, Xiaoping P., Mayberg, Helen S.. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Human brain mapping, vol.33, no.8, 1914-1928.

  52. Pinaya, Walter H. L., Mechelli, Andrea, Sato, João R.. Using deep autoencoders to identify abnormal brain structural patterns in neuropsychiatric disorders: A large‐scale multi‐sample study. Human brain mapping, vol.40, no.3, 944-954.

  53. Schaefer, Alexander, Kong, Ru, Gordon, Evan M, Laumann, Timothy O, Zuo, Xi-Nian, Holmes, Avram J, Eickhoff, Simon B, Yeo, B T Thomas. Local-Global Parcellation of the Human Cerebral Cortex from Intrinsic Functional Connectivity MRI. Cerebral cortex, vol.28, no.9, 3095-3114.

  54. Heinsfeld, Anibal Sólon, Franco, Alexandre Rosa, Craddock, R. Cameron, Buchweitz, Augusto, Meneguzzi, Felipe. Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage : Clinical, vol.17, 16-23.

  55. Ghiassian, Sina, Greiner, Russell, Jin, Ping, Brown, Matthew R. G.. Using Functional or Structural Magnetic Resonance Images and Personal Characteristic Data to Identify ADHD and Autism. PloS one, vol.11, no.12, e0166934-.

  56. Nouretdinov, I., Costafreda, S.G., Gammerman, A., Chervonenkis, A., Vovk, V., Vapnik, V., Fu, C.H.Y.. Machine learning classification with confidence: Application of transductive conformal predictors to MRI-based diagnostic and prognostic markers in depression. NeuroImage, vol.56, no.2, 809-813.

  57. 10.1007/978-3-030-19591-5_40 

  58. Sen, Bhaskar, Borle, Neil C., Greiner, Russell, Brown, Matthew R. G.. A general prediction model for the detection of ADHD and Autism using structural and functional MRI. PloS one, vol.13, no.4, e0194856-.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로