$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Multiscale and Adversarial Learning-Based Semi-Supervised Semantic Segmentation Approach for Crack Detection in Concrete Structures 원문보기

IEEE access : practical research, open solutions, v.8, 2020년, pp.170939 - 170950  

Shim, Seungbo (Future Infrastructure Research Center, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, South Korea) ,  Kim, Jin (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Cho, Gye-Chun (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Lee, Seong-Won (Future Infrastructure Research Center, Korea Institute of Civil Engineering and Building Technology (KICT), Goyang, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Typically, the operational lifetime of underground concrete structures is several decades. At present, many such structures are approaching their original life expectancy. In this stage, the essential functionality of the structures may be considerably degraded, leading to various safety hazards suc...

참고문헌 (43)

  1. arXiv 1608 06993 Densely connected convolutional networks huang 2016 

  2. 10.1109/VCIP.2017.8305148 

  3. Proc 35th Int Symp Autom Robot Construct (ISARC) Performance comparison of pretrained convolutional neural networks on crack detection in buildings sorguç 2018 1 

  4. Li, Gang, Wan, Jian, He, Shuanhai, Liu, Qiangwei, Ma, Biao. Semi-Supervised Semantic Segmentation Using Adversarial Learning for Pavement Crack Detection. IEEE access : practical research, open solutions, vol.8, 51446-51459.

  5. 10.1109/ICCV.2017.606 

  6. arXiv 1802 07934 Adversarial learning for semi-supervised semantic segmentation hung 2018 

  7. 10.1109/CVPR.2017.353 

  8. Badrinarayanan, Vijay, Kendall, Alex, Cipolla, Roberto. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE transactions on pattern analysis and machine intelligence, vol.39, no.12, 2481-2495.

  9. Proc IEEE Conf Comput Vis Pattern Recognit Accurate object localization with shape masks marszalek 2007 1 

  10. Dorafshan, Sattar, Thomas, Robert J., Maguire, Marc. SDNET2018: An annotated image dataset for non-contact concrete crack detection using deep convolutional neural networks. Data in brief, vol.21, 1664-1668.

  11. Kim, Byunghyun, Cho, Soojin. Image‐based concrete crack assessment using mask and region‐based convolutional neural network. Structural control and health monitoring, vol.26, no.8, e2381-.

  12. Proc Int Conf Mach Learn (ICML) Rectifier nonlinearities improve neural network acoustic models maas 2013 30 3 

  13. Yu, Seung-Nam, Jang, Jae-Ho, Han, Chang-Soo. Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel. Automation in construction, vol.16, no.3, 255-261.

  14. 10.1109/CISP.2010.5646923 

  15. 10.1109/ICRA.2011.5980131 

  16. Lim, Ronny Salim, Hung Manh La, Weihua Sheng. A Robotic Crack Inspection and Mapping System for Bridge Deck Maintenance. IEEE transactions on automation science and engineering, vol.11, no.2, 367-378.

  17. Chanda, S., Bu, G., Guan, H., Jo, J., Pal, U., Loo, Y.-C., Blumenstein, M.. Automatic Bridge Crack Detection - A Texture Analysis-Based Approach. Lecture notes in computer science, vol.8774, 193-203.

  18. 10.1109/ICIP.2014.7025156 

  19. 10.1109/ICIP.2006.313007 

  20. Proc Int Conf Transp Mech Electr Eng (TMEE) Pavement distress detection and classification with automated image processing wang 2011 10.1109/TMEE.2011.6199455 1345 

  21. Mathavan, Senthan, Vaheesan, Kanapathippillai, Kumar, Akash, Chandrakumar, Chanjief, Kamal, Khurram, Rahman, Mujib, Stonecliffe-Jones, Martyn. Detection of pavement cracks using tiled fuzzy Hough transform. Journal of electronic imaging, vol.26, no.5, 1-.

  22. 10.1109/CVPR.2019.00541 

  23. Kim, Min-Koo, Sohn, Hoon, Chang, Chih-Chen. Localization and Quantification of Concrete Spalling Defects Using Terrestrial Laser Scanning. Journal of computing in civil engineering, vol.29, no.6, 04014086-.

  24. Proc 32nd AAAI Conf Artif Intell Mix-and-match tuning for self-supervised semantic segmentation zhan 2018 1 

  25. Proc Construct Economy Res Inst Korea Seoul Future trend of capital investment for Korean transportation infrastructure park 2016 6 

  26. German, S., Brilakis, I., DesRoches, R.. Rapid entropy-based detection and properties measurement of concrete spalling with machine vision for post-earthquake safety assessments. Advanced engineering informatics, vol.26, no.4, 846-858.

  27. Proc Adv Neural Inf Process Syst Generative adversarial nets goodfellow 2014 2672 

  28. Dawood, Thikra, Zhu, Zhenhua, Zayed, Tarek. Machine vision-based model for spalling detection and quantification in subway networks. Automation in construction, vol.81, 149-160.

  29. Cha, Young‐Jin, Choi, Wooram, Suh, Gahyun, Mahmoudkhani, Sadegh, Büyüköztürk, Oral. Autonomous Structural Visual Inspection Using Region‐Based Deep Learning for Detecting Multiple Damage Types. Computer-aided civil and infrastructure engineering, vol.33, no.9, 731-747.

  30. 10.1061/9780784480427.040 

  31. Fujino, Yozo, Siringoringo, Dionysius M.. Recent research and development programs for infrastructures maintenance, renovation and management in Japan. Structure and infrastructure engineering : maintenance, management, life-cycle design and performance, vol.16, no.1, 3-25.

  32. Gonzalez-Jorge, H., Puente, I., Riveiro, B., Martinez-Sanchez, J., Arias, P.. Automatic segmentation of road overpasses and detection of mortar efflorescence using mobile LiDAR data. Optics and laser technology, vol.54, 353-361.

  33. Inspection Policy and Procedures for Rail Transit Tunnels and Underground Structures 1997 

  34. O'Byrne, Michael, Ghosh, Bidisha, Schoefs, Franck, Pakrashi, Vikram. Regionally Enhanced Multiphase Segmentation Technique for Damaged Surfaces. Computer-aided civil and infrastructure engineering, vol.29, no.9, 644-658.

  35. Feng, Chuncheng, Zhang, Hua, Wang, Haoran, Wang, Shuang, Li, Yonglong. Automatic Pixel-Level Crack Detection on Dam Surface Using Deep Convolutional Network. Sensors, vol.20, no.7, 2069-.

  36. Zhang, Wenyu, Zhang, Zhenjiang, Qi, Dapeng, Liu, Yun. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring. Sensors, vol.14, no.10, 19307-19328.

  37. Proc Int Conf Artif Intell Statist Understanding the difficulty of training deep feedforward neural networks glorot 2010 249 

  38. Kim, Byunghyun, Cho, Soojin. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique. Sensors, vol.18, no.10, 3452-.

  39. 10.1109/CVPR.2015.7298965 

  40. Cha, Young‐Jin, Choi, Wooram, Büyüköztürk, Oral. Deep Learning‐Based Crack Damage Detection Using Convolutional Neural Networks. Computer-aided civil and infrastructure engineering, vol.32, no.5, 361-378.

  41. 10.1109/ICCV.2017.322 

  42. Proc Int Conf Learn Represent Adam: A method for stochastic optimization kingma 2015 1 

  43. ScrapeBox—The Swiss Army Knife of SEO! 2020 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로