Kim, Byung Chun
(National Institute for Mathematical Science, Daejeon, South Korea)
,
Joe, Dosang
(National Institute for Mathematical Science, Daejeon, South Korea)
,
Woo, Youngho
(National Institute for Mathematical Science, Daejeon, South Korea)
,
Kim, Yongkuk
(Kyungpook National University, Daegu, South Korea)
,
Yoon, Gangjoon
(National Institute for Mathematical Science, Daejeon, South Korea)
Quantitative structure-activity relationship (QSAR) regression models are mathematical ones which relate the structural properties of chemicals to the potencies of the biological activities of the chemicals. In QSAR models, the physical and chemical information of the molecules is encoded into quant...
Quantitative structure-activity relationship (QSAR) regression models are mathematical ones which relate the structural properties of chemicals to the potencies of the biological activities of the chemicals. In QSAR models, the physical and chemical information of the molecules is encoded into quantitative numbers called descriptors. Recently, experimental test results (profiles) have been used as descriptors of chemicals. Profile QSAR 2.0 (pQSAR) model suggested by Martin et al., is a multitask, two step machine learning prediction method with a combination of random forest regressions (RFRs) and partial least squares regression (PLSR). In pQSAR model, one fills the profile table’s missing values with RFRs and then builds PLSR using the profile predictions. Note that in the second step of the pQSAR method, PLSR’s predictor variables are profiles; so activity values, and the response variables are also activity values. Thus we can use the PLSRs to update the profile table and then repeat the second step. In this work, we propose an extended model of pQSAR generated by RFRs and PLSRs. Experiment of updating the given full initially predicted profile table by two kinds of prediction models, RFRs and PLSRs, has been conducted iteratively for the PKIS and ChEMBL data sets. Even though prediction performance of individual combination of RFRs and PLSRs varies, the average of the all possible predicted profile tables for given iteration shows better performance. This ensemble model has better prediction performance in sense of Pearson’s $R^{2}$ compared to that of the pQSAR model.
Quantitative structure-activity relationship (QSAR) regression models are mathematical ones which relate the structural properties of chemicals to the potencies of the biological activities of the chemicals. In QSAR models, the physical and chemical information of the molecules is encoded into quantitative numbers called descriptors. Recently, experimental test results (profiles) have been used as descriptors of chemicals. Profile QSAR 2.0 (pQSAR) model suggested by Martin et al., is a multitask, two step machine learning prediction method with a combination of random forest regressions (RFRs) and partial least squares regression (PLSR). In pQSAR model, one fills the profile table’s missing values with RFRs and then builds PLSR using the profile predictions. Note that in the second step of the pQSAR method, PLSR’s predictor variables are profiles; so activity values, and the response variables are also activity values. Thus we can use the PLSRs to update the profile table and then repeat the second step. In this work, we propose an extended model of pQSAR generated by RFRs and PLSRs. Experiment of updating the given full initially predicted profile table by two kinds of prediction models, RFRs and PLSRs, has been conducted iteratively for the PKIS and ChEMBL data sets. Even though prediction performance of individual combination of RFRs and PLSRs varies, the average of the all possible predicted profile tables for given iteration shows better performance. This ensemble model has better prediction performance in sense of Pearson’s $R^{2}$ compared to that of the pQSAR model.
이 논문을 인용한 문헌
연구과제 타임라인
LOADING...
LOADING...
LOADING...
LOADING...
LOADING...
활용도 분석정보
상세보기
다운로드
내보내기
활용도 Top5 논문
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다. 더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.