$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Differentiated Backprojection Domain Deep Learning for Conebeam Artifact Removal 원문보기

IEEE transactions on medical imaging, v.39 no.11, 2020년, pp.3571 - 3582  

Han, Yoseob (Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM, USA) ,  Kim, Junyoung (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea) ,  Ye, Jong Chul (Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea)

Abstract AI-Helper 아이콘AI-Helper

Conebeam CT using a circular trajectory is quite often used for various applications due to its relative simple geometry. For conebeam geometry, Feldkamp, Davis and Kress algorithm is regarded as the standard reconstruction method, but this algorithm suffers from so-called conebeam artifacts as the ...

참고문헌 (34)

  1. Wang, Zhou, Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.13, no.4, 600-612.

  2. arXiv 1412 3474 Deep domain confusion: Maximizing for domain invariance tzeng 2014 

  3. 10.1145/2733373.2807412 

  4. IEEE Trans Med Imag Region of interest reconstruction from truncated data in circular cone-beam CT yu 2006 10.1109/TMI.2006.872329 25 869 

  5. Kang, Eunhee, Koo, Hyun Jung, Yang, Dong Hyun, Seo, Joon Bum, Ye, Jong Chul. Cycle‐consistent adversarial denoising network for multiphase coronary CT angiography. Medical physics, vol.46, no.2, 550-562.

  6. Sidky, Emil Y, Jørgensen, Jakob H, Pan, Xiaochuan. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm. Physics in medicine & biology, vol.57, no.10, 3065-3091.

  7. Zhang, Zheng, Han, Xiao, Pearson, Erik, Pelizzari, Charles, Sidky, Emil Y, Pan, Xiaochuan. Artifact reduction in short-scan CBCT by use of optimization-based reconstruction. Physics in medicine & biology, vol.61, no.9, 3387-3406.

  8. Xia, Dan, Langan, David A, Solomon, Stephen B, Zhang, Zheng, Chen, Buxin, Lai, Hao, Sidky, Emil Y, Pan, Xiaochuan. Optimization-based image reconstruction with artifact reduction in C-arm CBCT. Physics in medicine & biology, vol.61, no.20, 7300-7333.

  9. Proc Adv Neural Inf Process Syst ImageNet classification with deep convolutional neural networks krizhevsky 2012 1097 

  10. Proc Int Conf Med Image Comput Comput -Assist Intervent (MICCAI) U-net: Convolutional networks for biomedical image segmentation ronneberger 2015 234 

  11. arXiv 1611 06391 Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis han 2016 

  12. Kang, Eunhee, Min, Junhong, Ye, Jong Chul. A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction. Medical physics, vol.44, no.10,

  13. Chen, Hu, Zhang, Yi, Kalra, Mannudeep K., Lin, Feng, Chen, Yang, Liao, Peixi, Zhou, Jiliu, Wang, Ge. Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network. IEEE transactions on medical imaging, vol.36, no.12, 2524-2535.

  14. Kang, Eunhee, Chang, Won, Yoo, Jaejun, Ye, Jong Chul. Deep Convolutional Framelet Denosing for Low-Dose CT via Wavelet Residual Network. IEEE transactions on medical imaging, vol.37, no.6, 1358-1369.

  15. Jin, Kyong Hwan, McCann, Michael T., Froustey, Emmanuel, Unser, Michael. Deep Convolutional Neural Network for Inverse Problems in Imaging. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, vol.26, no.9, 4509-4522.

  16. Zou, Yu, Pan, Xiaochuan. Exact image reconstruction on PI-lines from minimum data in helical cone-beam CT. Physics in medicine & biology, vol.49, no.6, 941-959.

  17. Mori, Shinichiro, Endo, Masahiro, Komatsu, Shuhei, Kandatsu, Susumu, Yashiro, Tomoyasu, Baba, Masayuki. A combination-weighted Feldkamp-based reconstruction algorithm for cone-beam CT. Physics in medicine & biology, vol.51, no.16, 3953-3965.

  18. Pack, Jed D, Noo, Fr?d?ric. Cone-beam reconstruction using 1D filtering along the projection of M-lines. Inverse problems, vol.21, no.3, 1105-1120.

  19. Tang, Xiangyang, Hsieh, Jiang, Hagiwara, Akira, Nilsen, Roy A, Thibault, Jean-Baptiste, Drapkin, Evgeny. A three-dimensional weighted cone beam filtered backprojection (CB-FBP) algorithm for image reconstruction in volumetric CT under a circular source trajectory. Physics in medicine & biology, vol.50, no.16, 3889-3905.

  20. Bartolac, Steven, Clackdoyle, Rolf, Noo, Frederic, Siewerdsen, Jeff, Moseley, Douglas, Jaffray, David. A local shift‐variant Fourier model and experimental validation of circular cone‐beam computed tomography artifacts. Medical physics, vol.36, no.2, 500-512.

  21. Zou, Yu, Pan, Xiaochuan. Image reconstruction on PI-lines by use of filtered backprojection in helical cone-beam CT. Physics in medicine & biology, vol.49, no.12, 2717-2731.

  22. Tuy, Heang K.. An Inversion Formula for Cone-Beam Reconstruction. SIAM journal on applied mathematics, vol.43, no.3, 546-552.

  23. Peyrin, F., Amiel, M., Goutte, R.. Analysis of a cone beam x-ray tomographic system for different scanning modes. Journal of the Optical Society of America. A, Optics and image science, vol.9, no.9, 1554-.

  24. Proc Fully 3D Image Reconstruction in Radiology and Nuclear Medicine Mitigating cone-beam artifacts in short-scan CT imaging for large cone-angle scans pack 2013 307 

  25. Grass, M, K?hler, Th, Proksa, R. Angular weighted hybrid cone-beam CT reconstruction for circular trajectories. Physics in medicine & biology, vol.46, no.6, 1595-1610.

  26. Sidky, Emil Y, Pan, Xiaochuan. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in medicine & biology, vol.53, no.17, 4777-4807.

  27. Feldkamp, L. A., Davis, L. C., Kress, J. W.. Practical cone-beam algorithm. Journal of the Optical Society of America. A, Optics and image science, vol.1, no.6, 612-.

  28. Han, Yoseob, Ye, Jong Chul. Framing U-Net via Deep Convolutional Framelets: Application to Sparse-View CT. IEEE transactions on medical imaging, vol.37, no.6, 1418-1429.

  29. Han, Yoseob, Ye, Jong Chul. One network to solve all ROIs: Deep learning CT for any ROI using differentiated backprojection. Medical physics, vol.46, no.12,

  30. Proc 5th Int Conf Image Formation X-ray Comput Tomogr Deep learning interior tomography for region-of-interest reconstruction han 2018 1 

  31. Proceedings 36th Int Conf Mach Learn Understanding geometry of encoder-decoder CNNs ye 2019 97 7064 

  32. Ye, Jong Chul, Han, Yoseob, Cha, Eunju. Deep Convolutional Framelets: A General Deep Learning Framework for Inverse Problems. SIAM journal on imaging sciences, vol.11, no.2, 991-1048.

  33. Dennerlein, F., Noo, F., Schondube, H., Lauritsch, G., Hornegger, J.. A Factorization Approach for Cone-Beam Reconstruction on a Circular Short-Scan. IEEE transactions on medical imaging, vol.27, no.7, 887-896.

  34. Lee, Minji, Han, Yoseob, Ward, John Paul, Unser, Michael, Ye, Jong Chul. Interior Tomography Using 1D Generalized Total Variation. Part II: Multiscale Implementation. SIAM journal on imaging sciences, vol.8, no.4, 2452-2486.

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로