$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Determining UAV Flight Trajectory for Target Recognition Using EO/IR and SAR 원문보기

Sensors, v.20 no.19, 2020년, pp.5712 -   

Stecz, Wojciech (C4ISR Software Department, PIT-RADWAR, 04-051 Warsaw, Poland) ,  Gromada, Krzysztof (Krzysztof.Gromada@pitradwar.com)

Abstract AI-Helper 아이콘AI-Helper

The paper presents the concept of planning the optimal trajectory of fixed-wing unmanned aerial vehicle (UAV) of a short-range tactical class, whose task is to recognize a set of ground objects as a part of a reconnaissance mission. Tasks carried out by such systems are mainly associated with an aer...

주제어

참고문헌 (35)

  1. 1. Coutinhoa W.P. Battarrab M. Fliegea J. The unmanned aerial vehicle routing and trajectory optimisation problem, a taxonomic review Comput. Ind. Eng. 2018 120 116 128 10.1016/j.cie.2018.04.037 

  2. 2. Yang L. Qi J. Song D. Xiao J. Han J. Xia Y. Survey of Robot 3D Path Planning Algorithms J. Control Sci. Eng. 2016 1 22 10.1155/2016/7426913 

  3. 3. Stecz W. Gromada K. UAV Mission Planning with SAR Application Sensors 2020 20 1080 10.3390/s20041080 32079279 

  4. 4. Zhao Y. Zheng Z. Liu Y. Survey on computational-intelligence-based UAV path planning Knowl.-Based Syst. 2018 158 54 64 10.1016/j.knosys.2018.05.033 

  5. 5. Schellenberg B. Richardson T. Richards A. Clarke R. Watson M. On-Board Real-Time Trajectory Planning for Fixed Wing Unmanned Aerial Vehicles in Extreme Environments Sensors 2019 19 4085 10.3390/s19194085 

  6. 6. Mufalli F. Batta R. Nagi R. Simultaneous sensor selection and routing of unmanned aerial vehicles for complex mission plans Comput. Oper. Res. 2012 39 2787 2799 10.1016/j.cor.2012.02.010 

  7. 7. Li J. Chen J. Wang P. Li C. Sensor-Oriented Path Planning for Multiregion Surveillance with a Single Lightweight UAV SAR Sensors 2018 18 548 10.3390/s18020548 

  8. 8. Vasquez-Gomez J.I. Marciano-Melchor M. Valentin L. Herrera-Lozada J.C. Coverage Path Planning for 2D Convex Regions J. Intell. Robot. Syst. 2020 97 81 94 10.1007/s10846-019-01024-y 

  9. 9. El-Sherbeny N.A. Vehicle routing with time windows: An overview of exact, heuristic and metaheuristic methods J. King Saud Univ. (Sci.) 2010 22 123 131 10.1016/j.jksus.2010.03.002 

  10. 10. Schneider M. The vehicle-routing problem with time windows anddriver-specific times Eur. J. Oper. Res. 2016 250 101 119 10.1016/j.ejor.2015.09.015 

  11. 11. Hu C. Lu J. Liu X. Zhang G. Robust vehicle routing problem with hard time windows under demand and travel time uncertainty Comput. Oper. Res. 2018 94 139 153 10.1016/j.cor.2018.02.006 

  12. 12. Bai J. Su Y. Chen L. Feng Y. Liu J. EO Sensor Planning for UAV Engineering Reconnaissance Based on NIIRS and GIQE Math. Probl. Eng. 2018 1 9 10.1155/2018/6837014 

  13. 13. National Collection of Aerial Photography Home Page―Feature: The National Imagery Interpretability Rating Scale Available online: https://ncap.org.uk/feature/national-imagery-interpretability-rating-scale-niirs (accessed on 10 August 2020) 

  14. 14. Motion Imagery Standards Board Video-National Imagery Interpretability Rating Scale STANDARD The National Geospatial-Intelligence Agency (NGA) Springfield, VA, USA 2014 

  15. 15. Pytlak R. Numerical Methods for Optimal Control Problems with State Constraints Lecture Notes in Mathematics Springer Berlin/Heidelberg, Germany 1999 10.1007/BFb0097244 

  16. 16. Choset H. Nagatani K. Topological simultaneous localization and mapping (SLAM): Toward exact localization without explicit localization IEEE Trans. Robot. Autom. 2001 17 125 137 10.1109/70.928558 

  17. 17. Kim J. Workspace exploration and protection with multiple robots assisted by sensor networks Int. J. Adv. Robot. Syst. 2018 1 14 10.1177/1729881418792170 

  18. 18. Xin L. Zhou C. Ding M. 3D multipath planning for UAV based on network graph J. Syst. Eng. Electron. 2011 22 640 646 10.3969/j.issn.1004-4132.2011.04.013 

  19. 19. Velenzuela A.Q. Reyes J.C.G. Comparative Study of the Different Versions of General Image Quality Equation ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2019 IV-2/W5 10.5194/isprs-annals-IV-2-W5-493-2019 

  20. 20. Colomina I. Molina P. Unmanned aerial systems for photogrammetry and remote sensing: A review ISPRS J. Photogramm. Remote Sens. 2014 92 79 97 10.1016/j.isprsjprs.2014.02.013 

  21. 21. Gromek D. Samczynski P. Misiurewicz J. Malanowski M. Kulpa K. Gados A. Jarzebska A. Smolarczyk M. Implementation and Results of New High Resolution SAR Modes for an Airborne Maritime Patrol Radar Int. J. Electron. Telecommun. 2013 59 213 218 10.2478/eletel-2013-0025 

  22. 22. Gutchess D. Irvine J.M. Young M. Snorrason M. Predicting the effectiveness of SAR imagery for target detection Proc. SPIE 2011 8051 805110 10.1117/12.882712 

  23. 23. Nolan A. Goley S. Bakich M. Performance Estimation of SAR imagery using NIIRS techniques Proc. SPIE 2012 23 10.1117/12.920849 

  24. 24. Soumekh M. Himed B. SAR-MTI processing of multi-channel airborne radar measurement (MCARM) data Proceedings of the IEEE National Radar Conference Long Beach, CA, USA 25 April 2002 24 28 10.1109/NRC.2002.999687 

  25. 25. STANAG 4586 Ed.4, Standard Interfaces of UAV Control System (UCS) for NATO UAV Interoperability NATO Standardization Agency (NSA) Brussels, Belgium 2017 

  26. 26. Chen X. Chen X. Xu G. The path planning algorithm studying about UAV attacks multiple moving targets based on Voronoi diagram Int. J. Control Autom. 2016 9 281 292 10.14257/ijca.2016.9.1.26 

  27. 27. Zhang K. Liu P. Kong W. Zou J. Liu M. An Improved Heuristic Algorithm for UCAV Path Planning J. Optim. 2017 10.1155/2017/8936164 

  28. 28. NATO NATO Intelligence, Surveillance, and Reconnaissance (ISR) Interoperability Architecture (NIIA) Allied Engineering Documentation Publication Brussels, Belgium 2005 

  29. 29. Miller C.E. Tucker A.W. Zemlin R.A. Integer programming formulation of traveling salesman problems J. ACM 1960 7 326 329 10.1145/321043.321046 

  30. 30. Pareek P. Verma A. Linear OPF with linearization of quadratic branch flow limits Proceedings of the IEEMA Engineer Infinite Conference (eTechNxT) New Delhi, India 13?14 March 2018 10.1109/TPWRS.2018.2865181 

  31. 31. Lin M.-H. Carlsson J.G. Ge D. Shi J. Tsai J.-F. A Review of Piecewise Linearization Methods Math. Probl. Eng. 2013 11 1 8 10.1155/2013/101376 

  32. 32. Gonzalez V. Monje C.A. Moreno L. Balaguer C. Fast Marching Square Method for UAVs Mission Planning with consideration of Dubins Model Constraints IFAC-PapersOnLine 2016 49 164 169 10.1016/j.ifacol.2016.09.029 

  33. 33. Janjo? F. Reichart R. Niermeyer P. Smooth Path-Generation Around Obstacles Using Quartic Splines and RRTs IFAC-PapersOnLine 2017 50 9108 9113 10.1016/j.ifacol.2017.08.1708 

  34. 34. Anderson E.P. Randal B. Tim M. Real-time dynamic trajectory smoothing for unmanned air vehicles IEEE Trans. Control Syst. Technol. 2005 13 471 477 10.1109/TCST.2004.839555 

  35. 35. Noonan A. Schinstock D. Lewis C. Spletzer B. Optimal Turning Path Generation for Unmanned Aerial Vehicles Sandia National Lab. (SNL-NM) Albuquerque, NM, USA 2007 21 26 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로