최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Molecules a journal of synthetic chemistry and natural product chemistry, v.25 no.21, 2020년, pp.5110 -
Bae, Sung Woo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea) , Jung, Sunghee (cantabile531@gmail.com (S.W.B.)) , Choi, Sang Chul (shjung89@kribb.re.kr (S.J.)) , Kim, Mi Young (choisc.wiseman@gmail.com (S.C.C.)) , Ryu, Stephen Beungtae (mykim3890@kribb.re.kr (M.Y.K.))
Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants ...
1. Cherian S. Ryu S.B. Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects Plant Biotechnol. J. 2019 17 204 2061 10.1111/pbi.13181 31150158
2. Davis W. The Rubber Industry’s Biological Nightmare Available online: https://money.cnn.com/magazines/fortune/fortune_archive/1997/08/04/229714/index.htm (accessed on 4 August 1997)
3. Mooibroek H. Cornish K. Alternative sources of natural rubber Appl. Microbiol. Biotechnol. 2000 53 355 365 10.1007/s002530051627 10803889
4. Van Beilen J.B. Poirier Y. Establishment of new crops for the production of natural rubber Trends Biotechnol. 2007 25 522 529 10.1016/j.tibtech.2007.08.009 17936926
5. Narasimhan T.E. Natural Rubber Production Declines, Demand-Supply Gap Rises to 45% Available online: https://www.business-standard.com/article/economy-policy/natural-rubber-production-declines-demand-supply-gap-rises-to-45-119031300213_1.html (accessed on 13 March 2019)
6. Tire Business Staff. Rubber Groups: Demand for Natural Rubber Increases, Supply Decreases Available online: https://www.tirebusiness.com/news/rubber-groups-demand-natural-rubber-increases-supply-decreases (accessed on 19 July 2019)
7. Kirschner J. Stepanek J. erny T. De Heer P. Van Dijk P.J. Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae?Crepidinae) Genet. Resour. Crop. Evol. 2012 60 455 471 10.1007/s10722-012-9848-0
8. Ramirez-Cadavid D.A. Cornish K. Michel F.C. Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts Ind. Crop. Prod. 2017 107 624 640 10.1016/j.indcrop.2017.05.043
9. Ganesh I. Choi S.C. Bae S.W. Park J.-C. Ryu S.B. Heterologous activation of the Hevea PEP16 promoter in the rubber-producing laticiferous tissues of Taraxacum kok-saghyz Sci. Rep. 2020 10 1 9 10.1038/s41598-020-67328-4 31913322
10. Kush A. Goyvaerts E. Chye M.-L. Chua N.H. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree) Proc. Natl. Acad. Sci. USA 1990 87 1787 1790 10.1073/pnas.87.5.1787 11607069
11. Berthelot K. LeComte S. Estevez Y. Peruch F. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins Biochimie 2014 106 1 9 10.1016/j.biochi.2014.07.002 25019490
12. Cornish K. Backhaus R.A. Rubber transferase activity in rubber particles of guayule Phytochemistry 1990 29 3809 3813 10.1016/0031-9422(90)85337-F
13. Asawatreratanakul K. Zhang Y.-W. Wititsuwannakul D. Wititsuwannakul R. Takahashi S. Rattanapittayaporn A. Koyama T. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis JBIC J. Biol. Inorg. Chem. 2003 270 4671 4680 10.1046/j.1432-1033.2003.03863.x
14. Epping J. Van Deenen N. Niephaus E. Stolze A. Fricke J. Huber C. Eisenreich W. Twyman R.M. Prufer D. Gronover C.S. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion Nat. Plants 2015 1 15048 10.1038/nplants.2015.48
15. Yamashita S. Yamaguchi H. Waki T. Aoki Y. Mizuno M. Yanbe F. Ishii T. Funaki A. Tozawa Y. Miyagi-Inoue Y. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis eLife 2016 5 e19022 10.7554/eLife.19022 27790974
16. Dupont J. Moreau F. Lance C. Jacob J.-L. Phospholipid composition of the membrane of lutoids from Hevea brasiliensis latex Phytochemistry 1976 15 1215 1217 10.1016/0031-9422(76)85080-7
17. Hasma H. Subramaniam A. Composition of lipids in latex of Hevea brasiliensis clone RRIM 501 J. Nat. Rubb. Res. 1986 1 30 40
18. Siler D.J. Goodrich-Tanrikulu M. Cornish K. Stafford A.E. McKeon T.A. Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica, and Euphorbia lactiflua indicates unconventional surface structure Plant physiol. Biochem. 1997 35 881 889
19. Cornish K. Wood D.F. Windle J.J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane Planta 1999 210 85 96 10.1007/s004250050657 10592036
20. Liengprayoon S. Sriroth K. Dubreucq E. Vaysse L. Glycolipid composition of Hevea brasiliensis latex Phytochemistry 2011 72 1902 1913 10.1016/j.phytochem.2011.04.023 21605880
21. Liengprayoon S. Chaiyut J. Sriroth K. Bonfils F. Sainte-Beuve J. Dubreucq E. Vaysse L. Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin Eur. J. Lipid Sci. Technol. 2013 115 1021 1031 10.1002/ejlt.201300023
22. Chan A.J. Steenkeste K. Eloy M. Brosson D. Gaboriaud F. Fontaine-Aupart M.-P. Lipid Content in small and large natural rubber particles Rubber Chem. Technol. 2015 88 248 257 10.5254/rct.15.85938
23. Laibach N. Schmidl S. Muller B. Bergmann M. Prufer D. Gronover C.S. Small rubber particle proteins from Taraxacum brevicorniculatum promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(cis -1,4-isoprene) bodies Plant J. 2018 93 1045 1061 10.1111/tpj.13829 29377321
24. Bonfils F. Ehabe E. Aymard C. Vaysse L. Sainte-Beuve J. Enhanced solvent extraction of polar lipids associated with rubber particles from hevea brasiliensis Phytochem. Anal. 2007 18 103 108 10.1002/pca.956 17439009
25. Hasma H. Lipids associated with rubber particles and their possible role in mechanical stability of latex concentrates J. Nat. Rubb. Res. 1991 6 105 114
26. Yang Y. Hu B. Bio-based chemicals from biorefining: Lipid and wax conversion and utilization Advances in Biorefineries Elsevier BV Amsterdam, Netherlands 2015 693 720
27. Wadeesirisak K. Castano S. Berthelot K. Vaysse L. Bonfils F. Peruch F. Rattanaporn K. Liengprayoon S. LeComte S. Bottier C. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex Biochim. Biophys. Acta (BBA) Biomembr. 2017 1859 201 210 10.1016/j.bbamem.2016.11.010
28. Dormann P. Benning C. Galactolipids rule in seed plants Trends Plant Sci. 2002 7 112 118 10.1016/S1360-1385(01)02216-6 11906834
29. Dowhan W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu. Rev. Biochem. 1997 66 199 232 10.1146/annurev.biochem.66.1.199 9242906
30. Van Meer G. Voelker D.R. Feigenson G.W. Membrane lipids: Where they are and how they behave Nat. Rev. Mol. Cell Biol. 2008 9 112 124 10.1038/nrm2330 18216768
31. Edward A. Gavin R.G.H. David R.S. Denis S. Kazakhstan Available online: https://www.britannica.com/place/Kazakhstan#ref73558 (accessed on 13 March 2020)
32. What Is A Continental Climate? Available online: https://www.worldatlas.com/articles/what-is-the-continental-climate.html (accessed on 21 May 2019)
33. Jeremy M.B.S. Tropical Rainforest Available online: https://www.britannica.com/science/tropical-rainforest (accessed on 13 March 2020)
34. Krishan B. Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India J. Exp. Biol. Agric. Sci. 2017 5 106 110
35. Brown D. Feeney M. Ahmadi M. Lonoce C. Sajari R. Di Cola A. Frigerio L. Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis J. Exp. Bot. 2017 68 5045 5055 10.1093/jxb/erx331 29036360
36. Chen J. Burke J.J. Xin Z. Xu C. Velten J. Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance Plant Cell Environ. 2006 29 1437 1448 10.1111/j.1365-3040.2006.01527.x 17080965
37. Stubbs C.D. Smith A.D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function Biochim. Biophys. Acta (BBA) Rev. Biomembr. 1984 779 89 137 10.1016/0304-4157(84)90005-4
38. Los D.A. Murata N. Membrane fluidity and its roles in the perception of environmental signals Biochim. Biophys. Acta (BBA) Biomembr. 2004 1666 142 157 10.1016/j.bbamem.2004.08.002 15519313
39. Helmreich E.J. Environmental influences on signal transduction through membranes: A retrospective mini-review Biophys. Chem. 2002 100 519 534 10.1016/S0301-4622(02)00303-4
40. Nozawa Y. Adaptive regulation of membrane lipids and fluidity during thermal acclimation in Tetrahymena Proc. Jpn. Acad. Ser. B 2011 87 450 462 10.2183/pjab.87.450 21986311
41. Kim H.J. Ok S.H. Bahn S.C. Jang J. Oh S.A. Park S.K. Twell D. Ryu S.B. Shin J.S. Endoplasmic Reticulum? and Golgi-Localized Phospholipase A2 Plays Critical Roles in Arabidopsis Pollen Development and Germination Plant Cell 2011 23 94 110 10.1105/tpc.110.074799 21278126
42. Folch J. Lees M. Stanley G.S. A simple method for the isolation and purification of total lipids from animal tissues J. Biol. Chem. 1957 226 497 509 13428781
43. Devaiah S.P. Roth M.R. Baughman E. Li M. Tamura P. Jeannotte R. Welti R. Wang X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a Phospholipase Dα1 knockout mutant Phytochemistry 2006 67 1907 1924 10.1016/j.phytochem.2006.06.005 16843506
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.