$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Lipid Composition of Latex and Rubber Particles in Hevea brasiliensis and Taraxacum kok-saghyz 원문보기

Molecules a journal of synthetic chemistry and natural product chemistry, v.25 no.21, 2020년, pp.5110 -   

Bae, Sung Woo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 34141, Korea) ,  Jung, Sunghee (cantabile531@gmail.com (S.W.B.)) ,  Choi, Sang Chul (shjung89@kribb.re.kr (S.J.)) ,  Kim, Mi Young (choisc.wiseman@gmail.com (S.C.C.)) ,  Ryu, Stephen Beungtae (mykim3890@kribb.re.kr (M.Y.K.))

Abstract AI-Helper 아이콘AI-Helper

Natural rubber is usually synthesized in the rubber particles present in the latex of rubber-producing plants such as the Pará rubber tree (Hevea brasiliensis) and rubber dandelion (Taraxacum kok-saghyz). Since the detailed lipid compositions of fresh latex and rubber particles of the plants ...

Keyword

참고문헌 (43)

  1. 1. Cherian S. Ryu S.B. Cornish K. Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects Plant Biotechnol. J. 2019 17 204 2061 10.1111/pbi.13181 31150158 

  2. 2. Davis W. The Rubber Industry’s Biological Nightmare Available online: https://money.cnn.com/magazines/fortune/fortune_archive/1997/08/04/229714/index.htm (accessed on 4 August 1997) 

  3. 3. Mooibroek H. Cornish K. Alternative sources of natural rubber Appl. Microbiol. Biotechnol. 2000 53 355 365 10.1007/s002530051627 10803889 

  4. 4. Van Beilen J.B. Poirier Y. Establishment of new crops for the production of natural rubber Trends Biotechnol. 2007 25 522 529 10.1016/j.tibtech.2007.08.009 17936926 

  5. 5. Narasimhan T.E. Natural Rubber Production Declines, Demand-Supply Gap Rises to 45% Available online: https://www.business-standard.com/article/economy-policy/natural-rubber-production-declines-demand-supply-gap-rises-to-45-119031300213_1.html (accessed on 13 March 2019) 

  6. 6. Tire Business Staff. Rubber Groups: Demand for Natural Rubber Increases, Supply Decreases Available online: https://www.tirebusiness.com/news/rubber-groups-demand-natural-rubber-increases-supply-decreases (accessed on 19 July 2019) 

  7. 7. Kirschner J. Stepanek J. erny T. De Heer P. Van Dijk P.J. Available ex situ germplasm of the potential rubber crop Taraxacum koksaghyz belongs to a poor rubber producer, T. brevicorniculatum (Compositae?Crepidinae) Genet. Resour. Crop. Evol. 2012 60 455 471 10.1007/s10722-012-9848-0 

  8. 8. Ramirez-Cadavid D.A. Cornish K. Michel F.C. Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts Ind. Crop. Prod. 2017 107 624 640 10.1016/j.indcrop.2017.05.043 

  9. 9. Ganesh I. Choi S.C. Bae S.W. Park J.-C. Ryu S.B. Heterologous activation of the Hevea PEP16 promoter in the rubber-producing laticiferous tissues of Taraxacum kok-saghyz Sci. Rep. 2020 10 1 9 10.1038/s41598-020-67328-4 31913322 

  10. 10. Kush A. Goyvaerts E. Chye M.-L. Chua N.H. Laticifer-specific gene expression in Hevea brasiliensis (rubber tree) Proc. Natl. Acad. Sci. USA 1990 87 1787 1790 10.1073/pnas.87.5.1787 11607069 

  11. 11. Berthelot K. LeComte S. Estevez Y. Peruch F. Hevea brasiliensis REF (Hev b 1) and SRPP (Hev b 3): An overview on rubber particle proteins Biochimie 2014 106 1 9 10.1016/j.biochi.2014.07.002 25019490 

  12. 12. Cornish K. Backhaus R.A. Rubber transferase activity in rubber particles of guayule Phytochemistry 1990 29 3809 3813 10.1016/0031-9422(90)85337-F 

  13. 13. Asawatreratanakul K. Zhang Y.-W. Wititsuwannakul D. Wititsuwannakul R. Takahashi S. Rattanapittayaporn A. Koyama T. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis JBIC J. Biol. Inorg. Chem. 2003 270 4671 4680 10.1046/j.1432-1033.2003.03863.x 

  14. 14. Epping J. Van Deenen N. Niephaus E. Stolze A. Fricke J. Huber C. Eisenreich W. Twyman R.M. Prufer D. Gronover C.S. A rubber transferase activator is necessary for natural rubber biosynthesis in dandelion Nat. Plants 2015 1 15048 10.1038/nplants.2015.48 

  15. 15. Yamashita S. Yamaguchi H. Waki T. Aoki Y. Mizuno M. Yanbe F. Ishii T. Funaki A. Tozawa Y. Miyagi-Inoue Y. Identification and reconstitution of the rubber biosynthetic machinery on rubber particles from Hevea brasiliensis eLife 2016 5 e19022 10.7554/eLife.19022 27790974 

  16. 16. Dupont J. Moreau F. Lance C. Jacob J.-L. Phospholipid composition of the membrane of lutoids from Hevea brasiliensis latex Phytochemistry 1976 15 1215 1217 10.1016/0031-9422(76)85080-7 

  17. 17. Hasma H. Subramaniam A. Composition of lipids in latex of Hevea brasiliensis clone RRIM 501 J. Nat. Rubb. Res. 1986 1 30 40 

  18. 18. Siler D.J. Goodrich-Tanrikulu M. Cornish K. Stafford A.E. McKeon T.A. Composition of rubber particles of Hevea brasiliensis, Parthenium argentatum, Ficus elastica, and Euphorbia lactiflua indicates unconventional surface structure Plant physiol. Biochem. 1997 35 881 889 

  19. 19. Cornish K. Wood D.F. Windle J.J. Rubber particles from four different species, examined by transmission electron microscopy and electron-paramagnetic-resonance spin labeling, are found to consist of a homogeneous rubber core enclosed by a contiguous, monolayer biomembrane Planta 1999 210 85 96 10.1007/s004250050657 10592036 

  20. 20. Liengprayoon S. Sriroth K. Dubreucq E. Vaysse L. Glycolipid composition of Hevea brasiliensis latex Phytochemistry 2011 72 1902 1913 10.1016/j.phytochem.2011.04.023 21605880 

  21. 21. Liengprayoon S. Chaiyut J. Sriroth K. Bonfils F. Sainte-Beuve J. Dubreucq E. Vaysse L. Lipid compositions of latex and sheet rubber from Hevea brasiliensis depend on clonal origin Eur. J. Lipid Sci. Technol. 2013 115 1021 1031 10.1002/ejlt.201300023 

  22. 22. Chan A.J. Steenkeste K. Eloy M. Brosson D. Gaboriaud F. Fontaine-Aupart M.-P. Lipid Content in small and large natural rubber particles Rubber Chem. Technol. 2015 88 248 257 10.5254/rct.15.85938 

  23. 23. Laibach N. Schmidl S. Muller B. Bergmann M. Prufer D. Gronover C.S. Small rubber particle proteins from Taraxacum brevicorniculatum promote stress tolerance and influence the size and distribution of lipid droplets and artificial poly(cis -1,4-isoprene) bodies Plant J. 2018 93 1045 1061 10.1111/tpj.13829 29377321 

  24. 24. Bonfils F. Ehabe E. Aymard C. Vaysse L. Sainte-Beuve J. Enhanced solvent extraction of polar lipids associated with rubber particles from hevea brasiliensis Phytochem. Anal. 2007 18 103 108 10.1002/pca.956 17439009 

  25. 25. Hasma H. Lipids associated with rubber particles and their possible role in mechanical stability of latex concentrates J. Nat. Rubb. Res. 1991 6 105 114 

  26. 26. Yang Y. Hu B. Bio-based chemicals from biorefining: Lipid and wax conversion and utilization Advances in Biorefineries Elsevier BV Amsterdam, Netherlands 2015 693 720 

  27. 27. Wadeesirisak K. Castano S. Berthelot K. Vaysse L. Bonfils F. Peruch F. Rattanaporn K. Liengprayoon S. LeComte S. Bottier C. Rubber particle proteins REF1 and SRPP1 interact differently with native lipids extracted from Hevea brasiliensis latex Biochim. Biophys. Acta (BBA) Biomembr. 2017 1859 201 210 10.1016/j.bbamem.2016.11.010 

  28. 28. Dormann P. Benning C. Galactolipids rule in seed plants Trends Plant Sci. 2002 7 112 118 10.1016/S1360-1385(01)02216-6 11906834 

  29. 29. Dowhan W. Molecular basis for membrane phospholipid diversity: Why are there so many lipids? Annu. Rev. Biochem. 1997 66 199 232 10.1146/annurev.biochem.66.1.199 9242906 

  30. 30. Van Meer G. Voelker D.R. Feigenson G.W. Membrane lipids: Where they are and how they behave Nat. Rev. Mol. Cell Biol. 2008 9 112 124 10.1038/nrm2330 18216768 

  31. 31. Edward A. Gavin R.G.H. David R.S. Denis S. Kazakhstan Available online: https://www.britannica.com/place/Kazakhstan#ref73558 (accessed on 13 March 2020) 

  32. 32. What Is A Continental Climate? Available online: https://www.worldatlas.com/articles/what-is-the-continental-climate.html (accessed on 21 May 2019) 

  33. 33. Jeremy M.B.S. Tropical Rainforest Available online: https://www.britannica.com/science/tropical-rainforest (accessed on 13 March 2020) 

  34. 34. Krishan B. Assessment of drought tolerance in few clones of natural rubber (Hevea brasiliensis) under dry hot climate of Odisha, India J. Exp. Biol. Agric. Sci. 2017 5 106 110 

  35. 35. Brown D. Feeney M. Ahmadi M. Lonoce C. Sajari R. Di Cola A. Frigerio L. Subcellular localization and interactions among rubber particle proteins from Hevea brasiliensis J. Exp. Bot. 2017 68 5045 5055 10.1093/jxb/erx331 29036360 

  36. 36. Chen J. Burke J.J. Xin Z. Xu C. Velten J. Characterization of the Arabidopsis thermosensitive mutant atts02 reveals an important role for galactolipids in thermotolerance Plant Cell Environ. 2006 29 1437 1448 10.1111/j.1365-3040.2006.01527.x 17080965 

  37. 37. Stubbs C.D. Smith A.D. The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function Biochim. Biophys. Acta (BBA) Rev. Biomembr. 1984 779 89 137 10.1016/0304-4157(84)90005-4 

  38. 38. Los D.A. Murata N. Membrane fluidity and its roles in the perception of environmental signals Biochim. Biophys. Acta (BBA) Biomembr. 2004 1666 142 157 10.1016/j.bbamem.2004.08.002 15519313 

  39. 39. Helmreich E.J. Environmental influences on signal transduction through membranes: A retrospective mini-review Biophys. Chem. 2002 100 519 534 10.1016/S0301-4622(02)00303-4 

  40. 40. Nozawa Y. Adaptive regulation of membrane lipids and fluidity during thermal acclimation in Tetrahymena Proc. Jpn. Acad. Ser. B 2011 87 450 462 10.2183/pjab.87.450 21986311 

  41. 41. Kim H.J. Ok S.H. Bahn S.C. Jang J. Oh S.A. Park S.K. Twell D. Ryu S.B. Shin J.S. Endoplasmic Reticulum? and Golgi-Localized Phospholipase A2 Plays Critical Roles in Arabidopsis Pollen Development and Germination Plant Cell 2011 23 94 110 10.1105/tpc.110.074799 21278126 

  42. 42. Folch J. Lees M. Stanley G.S. A simple method for the isolation and purification of total lipids from animal tissues J. Biol. Chem. 1957 226 497 509 13428781 

  43. 43. Devaiah S.P. Roth M.R. Baughman E. Li M. Tamura P. Jeannotte R. Welti R. Wang X. Quantitative profiling of polar glycerolipid species from organs of wild-type Arabidopsis and a Phospholipase Dα1 knockout mutant Phytochemistry 2006 67 1907 1924 10.1016/j.phytochem.2006.06.005 16843506 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로