최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Electronics, v.9 no.11, 2020년, pp.1844 -
Kim, Minhoe (Department of Communication Systems, EURECOM, 06410 Sophia-Antipolis, France) , Lee, Woongsup (Department of Information and Communication Engineering, Institute of Marine Industry, Gyeongsang National University, Tongyeong 53064, Korea) , Cho, Dong-Ho (Electrical Engineering School, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea)
In this paper, we investigate a deep learning based resource allocation scheme for massive multiple-input-multiple-output (MIMO) communication systems, where a base station (BS) with a large scale antenna array communicates with a user equipment (UE) using beamforming. In particular, we propose Deep...
Larsson Massive MIMO for next generation wireless systems IEEE Commun. Mag. 2014 10.1109/MCOM.2014.6736761 52 186
Biguesh Training-based MIMO channel estimation: A study of estimator tradeoffs and optimal training signals IEEE Trans. Signal Process. 2006 10.1109/TSP.2005.863008 54 884
Alkhateeb Limited feedback hybrid precoding for multi-user millimeter wave systems IEEE Trans. Wirel. Commun. 2015 10.1109/TWC.2015.2455980 14 6481
Dahrouj Coordinated beamforming for the multicell multi-antenna wireless system IEEE Trans. Wirel. Commun. 2010 10.1109/TWC.2010.05.090936 9 1748
(2020, February 03). IEEE Standards 802.11ad, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. Available online: https://standards.ieee.org/project/802_11.html.
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing Atari With Deep Reinforcement Learning. arXiv.
Elbir Joint Antenna Selection and Hybrid Beamformer Design Using Unquantized and Quantized Deep Learning Networks IEEE Trans. Wirel. Commun. 2020 10.1109/TWC.2019.2956146 19 1677
10.1109/APUSNCURSINRSM.2019.8888753 Elbir, A.M., and Mishra, K.V. (2019, January 7-12). Deep Learning Design for Joint Antenna Selection and Hybrid Beamforming in Massive MIMO. Proceedings of the 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA.
10.1109/ITA.2018.8503086 Klautau, A., Batista, P., González-Prelcic, N., Wang, Y., and Heath, R.W. (2018, January 11-16). 5G MIMO Data for Machine Learning: Application to Beam-Selection Using Deep Learning. Proceedings of the 2018 Information Theory and Applications Workshop (ITA), San Diego, CA, USA.
10.1109/ICC.2010.5502350 Yang, D., Yang, L.L., and Hanzo, L. (2010, January 11). DFT-Based Beamforming Weight-Vector Codebook Design for Spatially Correlated Channels in the Unitary Precoding Aided Multiuser Downlink. Proceedings of the 2010 IEEE International Conference on Communications, Nanjing, China.
Mnih Human-level control through deep reinforcement learning Nature 2015 10.1038/nature14236 518 529
10.1609/aaai.v30i1.10295 Van Hasselt, H., Guez, A., and Silver, D. (2015). Deep Reinforcement Learning with Double Q-Learning. arXiv.
Nair, V., and Hinton, G.E. (2010, January 21-24). Rectified linear units improve restricted boltzmann machines. Proceedings of the 27th International Conference on Machine Learning, Haifa, Israel.
Bultitude, Y.D.J., and Rautiainen, T. (2007). IST-WINNER D1.1.2P WINNER II Channel Models, NOKIA.
Li On the efficient beam-forming training for 60 GHz wireless personal area networks IEEE Trans. Wirel. Commun. 2013 10.1109/TWC.2012.121412.110419 12 504
Gilb, J.P. (2009). IEEE Standards 802.15.3c, Part 15.3: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for High Rate Wireless Personal Area Networks (WPANs), IEEE Computer Society.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.