$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A guide for bioinformaticians: ‘omics-based drug discovery for precision oncology

Drug discovery today, v.25 no.11, 2020년, pp.1897 - 1904  

Mun, Jihyeob (Center for Supercomputing Applications, Division of National Supercomputing R&D, Korea Institute of Science and Technology Information (KISTI)) ,  Choi, Gildon (Research Center for Drug Discovery Technology, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology) ,  Lim, Byungho (Research Center for Drug Discovery Technology, Division of Drug Discovery Research, Korea Research Institute of Chemical Technology)

Abstract AI-Helper 아이콘AI-Helper

Bioinformatics-centric drug development is inevitable in the era of precision medicine. Clinical ‘omics information, including genomics, epigenomics, transcriptomics, and proteomics, provides the most comprehensive molecular landscape in which each patient’s pathological history is delin...

참고문헌 (70)

  1. Cell Bailey 173 2 371 2018 10.1016/j.cell.2018.02.060 Comprehensive characterization of cancer driver genes and mutations 

  2. Nature Gaudelli 551 7681 464 2017 10.1038/nature24644 Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage 

  3. Nat. Genet Nelson 47 8 856 2015 10.1038/ng.3314 The support of human genetic evidence for approved drug indications 

  4. Sci. Rep. Hingorani 9 1 18911 2019 10.1038/s41598-019-54849-w Improving the odds of drug development success through human genomics: modelling study 

  5. Drug Discov. Today Dopazo 19 2 126 2014 10.1016/j.drudis.2013.06.003 Genomics and transcriptomics in drug discovery 

  6. Annu. Rev. Pathol. Pon 10 25 2015 10.1146/annurev-pathol-012414-040312 Driver and passenger mutations in cancer 

  7. Nature Lawrence 499 7457 214 2013 10.1038/nature12213 Mutational heterogeneity in cancer and the search for new cancer-associated genes 

  8. Science Vogelstein 339 6127 1546 2013 10.1126/science.1235122 Cancer genome landscapes 

  9. N. Engl. J. Med. Gerlinger 366 10 883 2012 10.1056/NEJMoa1113205 Intratumor heterogeneity and branched evolution revealed by multiregion sequencing 

  10. Genome Biol. Jolly 19 1 95 2018 10.1186/s13059-018-1476-3 Timing somatic events in the evolution of cancer 

  11. Nat. Commun. Malikic 10 1 2750 2019 10.1038/s41467-019-10737-5 Integrative inference of subclonal tumour evolution from single-cell and bulk sequencing data 

  12. Genome Biol. McLaren 17 1 122 2016 10.1186/s13059-016-0974-4 The Ensembl variant effect predictor 

  13. Nat. Rev. Cancer Dang 17 8 502 2017 10.1038/nrc.2017.36 Drugging the ‘undruggable’ cancer targets 

  14. Cell Tsherniak 170 3 2017 10.1016/j.cell.2017.06.010 Defining a cancer dependency Map 

  15. Cell Luo 136 5 823 2009 10.1016/j.cell.2009.02.024 Principles of cancer therapy: oncogene and non-oncogene addiction 

  16. Nucleic Acids Res. Kuleshov 44 W1 W90 2016 10.1093/nar/gkw377 Enrichr: a comprehensive gene set enrichment analysis web server 2016 update 

  17. Proc. Natl. Acad. Sci. U. S. A. Subramanian 102 43 15545 2005 10.1073/pnas.0506580102 Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles 

  18. BMC Med. Genomics Cai 10 Suppl. 4 75 2017 10.1186/s12920-017-0306-x Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus 

  19. Brief Bioinform. van Dam 19 4 575 2018 Gene co-expression analysis for functional classification and gene-disease predictions 

  20. Cell Vasaikar 177 4 1035 2019 10.1016/j.cell.2019.03.030 Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities 

  21. Nature Jiang 567 7747 257 2019 10.1038/s41586-019-0987-8 Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma 

  22. Trends Cancer Butler 6 5 380 2020 10.1016/j.trecan.2020.02.010 MGMT status as a clinical biomarker in glioblastoma 

  23. Nat. Rev. Genet Ong 12 4 283 2011 10.1038/nrg2957 Enhancer function: new insights into the regulation of tissue-specific gene expression 

  24. Trends Cancer Sengupta 3 4 269 2017 10.1016/j.trecan.2017.03.006 Super-enhancer-driven transcriptional dependencies in cancer 

  25. Nature Roadmap Epigenomics 518 7539 317 2015 10.1038/nature14248 Integrative analysis of 111 reference human epigenomes 

  26. World J. Gastroenterol. Lim 22 3 1190 2016 10.3748/wjg.v22.i3.1190 Genomic and epigenomic heterogeneity in molecular subtypes of gastric cancer 

  27. Nature Cancer Genome Atlas Research, N 513 7517 202 2014 10.1038/nature13480 Comprehensive molecular characterization of gastric adenocarcinoma 

  28. Nat. Rev. Mol. Cell Biol. Patti 13 4 263 2012 10.1038/nrm3314 Innovation: metabolomics: the apogee of the omics trilogy 

  29. Nat. Rev Drug Discov. Wishart 15 7 473 2016 10.1038/nrd.2016.32 Emerging applications of metabolomics in drug discovery and precision medicine 

  30. Trends Biochem. Sci. Luck 42 5 342 2017 10.1016/j.tibs.2017.02.006 Proteome-scale human interactomics 

  31. Sci. Rep. Kanhaiya 7 1 10327 2017 10.1038/s41598-017-10491-y Controlling directed protein interaction networks in cancer 

  32. Nucleic Acids Res. Liu 44 5 e49 2016 10.1093/nar/gkv1281 Modeling co-occupancy of transcription factors using chromatin features 

  33. Cell Res. Guo 29 3 179 2019 10.1038/s41422-019-0144-9 Degrading proteins in animals: ‘PROTAC’tion goes in vivo 

  34. Nucleic Acids Res. Koscielny 45 D1 D985 2017 10.1093/nar/gkw1055 Open Targets: a platform for therapeutic target identification and validation 

  35. Nucleic Acids Res. Carvalho-Silva 47 D1 D1056 2019 10.1093/nar/gky1133 Open Targets Platform: new developments and updates two years on 

  36. Database (Oxford) Rouillard 2016 baw100 2016 10.1093/database/baw100 The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins 

  37. Nucleic Acids Res. Nguyen 45 D1 D995 2017 10.1093/nar/gkw1072 Pharos: Collating protein information to shed light on the druggable genome 

  38. Cell McDonald 170 3 577 2017 10.1016/j.cell.2017.07.005 Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening 

  39. Nat. Commun. McFarland 9 1 4610 2018 10.1038/s41467-018-06916-5 Improved estimation of cancer dependencies from large-scale RNAi screens using model-based normalization and data integration 

  40. Science Kessler 335 6066 348 2012 10.1126/science.1212728 A SUMOylation-dependent transcriptional subprogram is required for Myc-driven tumorigenesis 

  41. Nature Ghandi 569 7757 503 2019 10.1038/s41586-019-1186-3 Next-generation characterization of the Cancer Cell Line Encyclopedia 

  42. Nat. Rev. Drug Discov. Schneider 19 5 353 2020 10.1038/s41573-019-0050-3 Rethinking drug design in the artificial intelligence era 

  43. Front Pharmacol. Cui 11 733 2020 10.3389/fphar.2020.00733 Discovering anti-cancer drugs via computational methods 

  44. J. Med. Chem. Zhu 56 17 6560 2013 10.1021/jm301916b Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis 

  45. Nature Lyu 566 7743 224 2019 10.1038/s41586-019-0917-9 Ultra-large library docking for discovering new chemotypes 

  46. Trends Pharmacol. Sci. Zheng 34 10 549 2013 10.1016/j.tips.2013.08.004 Computational methods for drug design and discovery: focus on China 

  47. Science Lamb 313 5795 1929 2006 10.1126/science.1132939 The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease 

  48. iScience Huang 7 40 2018 10.1016/j.isci.2018.08.017 A large-scale gene expression intensity-based similarity metric for drug repositioning 

  49. Cell Subramanian 171 6 1437 2017 10.1016/j.cell.2017.10.049 A next generation connectivity map: L1000 platform and the first 1,000,000 profiles 

  50. Drug Discov. Today Qu 17 23-24 1289 2012 10.1016/j.drudis.2012.07.017 Applications of Connectivity Map in drug discovery and development 

  51. Nat. Commun. Chen 8 16022 2017 10.1038/ncomms16022 Reversal of cancer gene expression correlates with drug efficacy and reveals therapeutic targets 

  52. Bioinformatics Sandmann 30 1 127 2014 10.1093/bioinformatics/btt592 gCMAP: user-friendly connectivity mapping with R 

  53. Cancer Discov. Jahchan 3 12 1364 2013 10.1158/2159-8290.CD-13-0183 A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors 

  54. Cancer Res. van Noort 74 20 5690 2014 10.1158/0008-5472.CAN-13-3540 Novel drug candidates for the treatment of metastatic colorectal cancer through global inverse gene-expression profiling 

  55. Nat. Genet Alvarez 50 7 979 2018 10.1038/s41588-018-0138-4 A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors 

  56. Nat. Commun. Stathias 9 1 5315 2018 10.1038/s41467-018-07659-z Drug and disease signature integration identifies synergistic combinations in glioblastoma 

  57. Br. J. Pharmacol. Hughes 162 6 1239 2011 10.1111/j.1476-5381.2010.01127.x Principles of early drug discovery 

  58. Nature Faivre 578 7794 306 2020 10.1038/s41586-020-1930-8 Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer 

  59. Stat. Biopharm. Res. Tryputsen 6 2 154 2014 10.1080/19466315.2014.888013 Using Fisher’s method to identify enriched gene sets 

  60. Drug Discov. Today Verbist 20 5 505 2015 10.1016/j.drudis.2014.12.014 Using transcriptomics to guide lead optimization in drug discovery projects: Lessons learned from the QSTAR project 

  61. Oncotarget Pozdeyev 7 32 51619 2016 10.18632/oncotarget.10010 Integrating heterogeneous drug sensitivity data from cancer pharmacogenomic studies 

  62. F1000Res Nguyen 5 2016 10.12688/f1000research.10529.1 Systematic assessment of multi-gene predictors of pan-cancer cell line sensitivity to drugs exploiting gene expression data 

  63. Mol. Cancer Res. Coldren 4 8 521 2006 10.1158/1541-7786.MCR-06-0095 Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines 

  64. Nat. Chem. Biol. Rees 12 2 109 2016 10.1038/nchembio.1986 Correlating chemical sensitivity and basal gene expression reveals mechanism of action 

  65. Cell McMillan 173 4 864 2018 10.1016/j.cell.2018.03.028 Chemistry-first approach for nomination of personalized treatment in lung cancer 

  66. Nature Garnett 483 7391 570 2012 10.1038/nature11005 Systematic identification of genomic markers of drug sensitivity in cancer cells 

  67. Cell Iorio 166 3 740 2016 10.1016/j.cell.2016.06.017 A landscape of pharmacogenomic interactions in cancer 

  68. Drug Resist Updat Twomey 30 48 2017 10.1016/j.drup.2017.02.002 Drug-biomarker co-development in oncology - 20 years and counting 

  69. Pharmaceuticals (Basel) Schmidt 9 33 2016 10.3390/ph9020033 Tumor heterogeneity, single-cell sequencing, and drug resistance 

  70. Nat. Methods Newman 12 5 453 2015 10.1038/nmeth.3337 Robust enumeration of cell subsets from tissue expression profiles 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로