$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Design of grain boundary enriched bimetallic borides for enhanced hydrogen evolution reaction

Chemical engineering journal, v.405, 2021년, pp.126977 -   

Huang, Huawei (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Jung, Hyeonjung (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ,  Jun, Hyunwoo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Woo, Dong Yoon (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Han, Jeong Woo (Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH)) ,  Lee, Jinwoo (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST))

Abstract AI-Helper 아이콘AI-Helper

Abstract Grain boundaries can induce strained regions in the nanostructure of catalysts that can provide highly active surfaces with optimized electronic structures for catalysis. Although studies on grain boundary have been reported for catalysis, it is still challenging to construct nanostructure...

Keyword

참고문헌 (51)

  1. Chem. Soc. Rev. Zou 44 5148 2015 10.1039/C4CS00448E Noble metal-free hydrogen evolution catalysts for water splitting 

  2. Science Seh 355 eaad4998 2017 10.1126/science.aad4998 Combining theory and experiment in electrocatalysis: insights into materials design 

  3. Energy Environ. Sci. Jacobson 8 2093 2015 10.1039/C5EE01283J 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States 

  4. Nano Energy Huang 58 778 2019 10.1016/j.nanoen.2019.01.094 Activation of transition metal oxides by in-situ electro-regulated structure-reconstruction for ultra-efficient oxygen evolution 

  5. Chem. Soc. Rev. Jiao 44 2060 2015 10.1039/C4CS00470A Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions 

  6. Energy Environ. Sci. Huang 13 545 2020 10.1039/C9EE03273H Rapid and energy-efficient microwave pyrolysis for high-yield production of highly-active bifunctional electrocatalysts for water splitting 

  7. Nanoscale Du 10 21617 2018 10.1039/C8NR07891B Recent progress in transition metal phosphides with enhanced electrocatalysis for hydrogen evolution 

  8. Angew. Chem. Int. Ed. Park 131 16184 2019 10.1002/ange.201908122 Investigation of the support effect in atomically dispersed Pt on WO3−x for utilization of Pt in the hydrogen evolution reaction 

  9. Adv. Mater. Wan 32 1901349 2020 10.1002/adma.201901349 Confining sub-nanometer Pt clusters in hollow mesoporous carbon spheres for boosting hydrogen evolution activity 

  10. Adv. Mater. Huang 31 1903415 2019 10.1002/adma.201903415 Graphene nanoarchitectonics: recent advances in graphene-based electrocatalysts for hydrogen evolution reaction 

  11. Sci. Adv. Lu 5 eaav6009 2019 10.1126/sciadv.aav6009 Highly crystalline Ni-doped FeP/carbon hollow nanorods as all-pH efficient and durable hydrogen evolving electrocatalysts 

  12. Small Wu 13 1602873 2017 10.1002/smll.201602873 In situ coupling of CoP polyhedrons and carbon nanotubes as highly efficient hydrogen evolution reaction electrocatalyst 

  13. Chem. Commun. Du 53 12012 2017 10.1039/C7CC07802A A Cu3P-CoP hybrid nanowire array: a superior electrocatalyst for acidic hydrogen evolution reactions 

  14. Acc. Chem. Res. Zhu 50 915 2017 10.1021/acs.accounts.6b00635 Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes 

  15. Nano Energy Huang 34 472 2017 10.1016/j.nanoen.2017.03.016 Iron-tuned super nickel phosphide microstructures with high activity for electrochemical overall water splitting 

  16. Energy Environ. Sci. Wang 12 3522 2019 10.1039/C9EE01743G Weakening hydrogen adsorption on nickel via interstitial nitrogen doping promotes bifunctional hydrogen electrocatalysis in alkaline solution 

  17. Energy Environ. Sci. Chen 12 3473 2019 10.1039/C9EE02808K Insights into interface engineering in steam reforming reactions for hydrogen production 

  18. Angew. Chem. Int. Ed. Zhang 55 6702 2016 10.1002/anie.201602237 Interface engineering of MoS2/Ni3S2 heterostructures for highly enhanced electrochemical overall-water-splitting activity 

  19. J. Am. Chem. Soc. Feng 137 4606 2015 10.1021/ja5130513 Grain-boundary-dependent CO2 electroreduction activity 

  20. Science Mariano 358 1187 2017 10.1126/science.aao3691 Selective increase in CO2 electroreduction activity at grain-boundary surface terminations 

  21. Adv. Mater. Diao 32 1905679 2019 10.1002/adma.201905679 Interfacial engineering of W2N/WC heterostructures derived from solid-state synthesis: a highly efficient trifunctional electrocatalyst for ORR, OER, and HER 

  22. Angew. Chem. Int. Ed. Zhuang 57 496 2018 10.1002/anie.201708748 MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution 

  23. Adv. Funct. Mater. Wang 27 1605802 2017 10.1002/adfm.201605802 Interface engineered WxC@WS2 nanostructure for enhanced hydrogen evolution catalysis 

  24. Nat. Mater. Najmaei 12 754 2013 10.1038/nmat3673 Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers 

  25. Science Chen 363 959 2019 10.1126/science.aav4302 Interface and heterostructure design in polyelemental nanoparticles 

  26. Nature Oh 577 359 2020 10.1038/s41586-019-1899-3 Design and synthesis of multigrain nanocrystals via geometric misfit strain 

  27. Adv. Funct. Mater. Gupta 30 1906481 2020 10.1002/adfm.201906481 Metal boride-based catalysts for electrochemical water-splitting: a review 

  28. J. Am. Chem. Soc. Alameda 141 10852 2019 10.1021/jacs.9b04726 Multi-step topochemical pathway to metastable Mo2AlB2 and related two-dimensional nanosheet heterostructures 

  29. Adv. Energy Mater. Masa 7 1700381 2017 10.1002/aenm.201700381 Ultrathin high surface area nickel boride (NixB) nanosheets as highly efficient electrocatalyst for oxygen evolution 

  30. Angew. Chem. Int. Ed. Vrubel 51 12703 2012 10.1002/anie.201207111 Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions 

  31. J. Am. Chem. Soc. Chen 139 12370 2017 10.1021/jacs.7b06337 Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction 

  32. Small Kang 16 1906707 2020 10.1002/smll.201906707 Mesoporous metal-metalloid amorphous alloys: the first synthesis of open 3D mesoporous Ni-B amorphous alloy spheres via a dual chemical reduction method 

  33. Energy Environ. Sci. Chen 12 3099 2019 10.1039/C9EE01564G Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst 

  34. Angew. Chem. Int. Ed. Ai 59 3961 2020 10.1002/anie.201915663 Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis 

  35. Adv. Energy Mater. Li 9 1803369 2019 10.1002/aenm.201803369 Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity 

  36. Phys. Rev. B Kresse 54 11169 1996 10.1103/PhysRevB.54.11169 Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set 

  37. Phys. Rev. B Kresse 47 558 1993 10.1103/PhysRevB.47.558 Ab initio molecular dynamics for liquid metals 

  38. Phys. Rev. B Blöchl 50 17953 1994 10.1103/PhysRevB.50.17953 Projector augmented-wave method 

  39. Phys. Rev. Lett. Perdew 77 3865 1996 10.1103/PhysRevLett.77.3865 Generalized gradient approximation made simple 

  40. Phys. Rev. B Monkhorst 13 5188 1976 10.1103/PhysRevB.13.5188 Special points for Brillouin-zone integrations 

  41. J. Mater. Chem. A Shao 6 10226 2018 10.1039/C8TA00635K Exploring new two-dimensional monolayers: pentagonal transition metal borides/carbides (penta-TMB/Cs) 

  42. Adv. Energy Mater. Peng 5 1401172 2015 10.1002/aenm.201401172 Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors 

  43. Adv. Mater. Lu 26 2683 2014 10.1002/adma.201304759 Ultrahigh hydrogen evolution performance of under-water “superaerophobic” MoS2 nanostructured electrodes 

  44. J. Am. Chem. Soc. Song 142 1857 2020 10.1021/jacs.9b10388 General strategy to optimize gas evolution reaction via assembled striped-pattern superlattices 

  45. Angew. Chem. Int. Ed. Park 56 5575 2017 10.1002/anie.201611756 Boron-dependency of molybdenum boride electrocatalysts for the hydrogen evolution reaction 

  46. Appl. Catal. B: Environ. Huang 245 656 2019 10.1016/j.apcatb.2019.01.034 Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis 

  47. Energy Environ. Sci. Guo 12 684 2019 10.1039/C8EE03405B High-performance oxygen evolution electrocatalysis by boronized metal sheets with self-functionalized surfaces 

  48. J. Mater. Chem. A Li 7 5288 2019 10.1039/C9TA00489K In situ structural evolution of a nickel boride catalyst: synergistic geometric and electronic optimization for the oxygen evolution reaction 

  49. Small Methods Huang 3 1900259 2019 10.1002/smtd.201900259 Microwave-assisted ultrafast synthesis of molybdenum carbide nanoparticles grown on carbon matrix for efficient hydrogen evolution reaction 

  50. J. Alloys Compd. Kayser 233 74 1996 10.1016/0925-8388(96)80037-5 Ni3B: powder diffraction pattern and lattice parameters 

  51. Angew. Chem. Int. Ed. Zheng 54 52 2015 10.1002/anie.201407031 Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로