최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Advances in mathematics, v.377, 2021년, pp.107470 -
Diestel, Reinhard (Mathematisches Seminar, Universitä) , Oum, Sang-il (t Hamburg)
Abstract We prove a general width duality theorem for combinatorial structures with well-defined notions of cohesion and separation. These might be graphs or matroids, but can be much more general or quite different. The theorem asserts a duality between the existence of high cohesion somewhere loc...
Discrete Appl. Math. Amini 309 20 6000 2009 Submodular partition functions
N. Bowler, R. Diestel, F. Mazoit, Tangle-tree duality in infinite graphs and matroids, in preparation.
Bowler
Eur. J. Comb. Carmesin 58 2016 10.1016/j.ejc.2016.04.007 A short proof that every finite graph has a tree-decomposition displaying its tangles
Carmesin
SIAM J. Discrete Math. Carmesin 28 1876 2014 10.1137/130923646 k-blocks: a connectivity invariant for graphs
Combinatorica Carmesin 34 1 1 2014 10.1007/s00493-014-2898-5 Connectivity and tree structure in finite graphs
Carmesin
Diestel
Diestel
Abh. Math. Semin. Univ. Hamb. Diestel 87 223 2017 10.1007/s12188-016-0163-0 Ends and tangles
Diestel 2017 Graph Theory
Order Diestel 35 157 2018 10.1007/s11083-017-9424-5 Abstract separation systems
Order Diestel 35 171 2018 10.1007/s11083-017-9425-4 Tree sets
R. Diestel, Tangles: indirect clustering in the empirical sciences, in preparation.
Diestel
Diestel
Combinatorica Diestel 39 1 37 2019 10.1007/s00493-017-3595-y Profiles of separations: in graphs, matroids, and beyond
Diestel
Diestel
Combinatorica Diestel 39 879 2019 10.1007/s00493-019-3798-5 Tangle-tree duality in graphs, matroids and beyond
Diestel
Elbracht
C. Elbracht, J. Kneip, M. Teegen, Obtaining trees of tangles from tangle-tree duality, in preparation.
Elbracht
Elbracht
Adv. Comb. Elbracht 2020 Tangles are decided by weighted vertex sets
Erde
SIAM J. Discrete Math. Erde 31 1529 2017 10.1137/16M1059539 Refining a tree-decomposition which distinguishes tangles
J. Comb. Theory, Ser. B Erde 130 114 2018 10.1016/j.jctb.2017.12.001 A unified treatment of linked and lean tree-decompositions
J. Comb. Theory, Ser. B Geelen 96 560 2006 10.1016/j.jctb.2005.11.001 Obstructions to branch-decomposition of matroids
Gollin
Kneip
Kneip
Eur. J. Comb. Lyaudet 31 3 681 2010 10.1016/j.ejc.2009.09.004 Partitions versus sets: a case of duality
J. Comb. Theory, Ser. B Mader 25 74 1978 10.1016/S0095-8956(78)80012-4 Über n-fach zusammenhängende Eckenmengen in Graphen
Reed 1997 Surveys in Combinatorics Tree width and tangles: a new connectivity measure and some applications
J. Comb. Theory, Ser. B Robertson 41 92 1986 10.1016/0095-8956(86)90030-4 Graph minors. V. Excluding a planar graph
J. Comb. Theory, Ser. B Robertson 52 153 1991 10.1016/0095-8956(91)90061-N Graph minors. X. Obstructions to tree-decomposition
J. Comb. Theory, Ser. B Robertson 89 43 2003 10.1016/S0095-8956(03)00042-X Graph minors. XVI. Excluding a non-planar graph
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.