$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Breaking the elastic limit of piezoelectric ceramics using nanostructures: A case study using ZnO

Nano energy, v.78, 2020년, pp.105259 -   

Kim, Hoon (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Yun, Seokjung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Kisun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Kim, Wonsik (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Ryu, Jeongjae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Nam, Hyeon Gyun (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ,  Han, Seung Min (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST) R) ,  Jeon, Seokwoo ,  Hong, Seungbum

Abstract AI-Helper 아이콘AI-Helper

Abstract Piezoelectric materials are suitable for haptic technology as they can convert mechanical stimuli into electrical signals and vice-versa. However, owing to their disadvantageous mechanical properties such as brittleness (in ceramics) and a low piezoelectric coefficient (in polymers), their...

Keyword

참고문헌 (80)

  1. IEEE Trans. Haptics. Culbertson 10 63 2017 10.1109/TOH.2016.2598751 Importance of matching physical friction, hardness, and texture in creating realistic haptic virtual surfaces 

  2. J. Intell. Mater. Syst. Struct. Kikuchi 27 859 2016 10.1177/1045389X15596621 Response time of magnetorheological fluid-based haptic device 

  3. Sci. Rep. Choi 5 10728 2015 10.1038/srep10728 Vertically aligned P(VDF-TrFE) core-shell structures on flexible pillar arrays 

  4. Sensors Actuator A Phys. Ryu 276 219 2018 10.1016/j.sna.2018.04.035 Flexible piezoelectric liquid volume sensor 

  5. Adv. Electron. Mater. Chen 3 2017 10.1002/aelm.201600540 A flexible PMN-PT ribbon-based piezoelectric-pyroelectric hybrid generator for human-activity energy harvesting and monitoring 

  6. Ceram. Int. Chandraiah 41 8040 2015 10.1016/j.ceramint.2015.02.154 Effect of dopants (A=Mg2+, Ca2+ and Sr2+) on ferroelectric, dielectric and piezoelectric properties of (Ba1−xAx) (Ti0.98Zr0.02) O3 lead-free piezo ceramics 

  7. Cryst. Growth Des. Fu 19 1198 2019 10.1021/acs.cgd.8b01647 Topochemical conversion of (111) BaTiO 3 piezoelectric microplatelets using Ba 6 Ti 17 O 40 as the precursor 

  8. J. Appl. Phys. Kim 122 164105 2017 10.1063/1.4999375 Structural and electrical characteristics of potential candidate lead-free BiFeO 3 -BaTiO 3 piezoelectric ceramics 

  9. ACS Appl. Mater. Interfaces Luo 9 13315 2017 10.1021/acsami.7b02263 Domain evolution and piezoelectric response across thermotropic phase boundary in (K,Na)NbO 3 -based epitaxial thin films 

  10. Scripta Mater. Zheng 94 25 2015 10.1016/j.scriptamat.2014.09.008 Giant d 33 in nonstoichiometric (K,Na)NbO 3 -based lead-free ceramics 

  11. Adv. Mater. Li 30 1705171 2018 10.1002/adma.201705171 Ultrahigh piezoelectric properties in textured (K,Na)NbO 3 -based lead-free ceramics 

  12. Appl. Surf. Sci. Qin 364 670 2016 10.1016/j.apsusc.2015.12.178 A high power ZnO thin film piezoelectric generator 

  13. Adv. Funct. Mater. Zhang 25 5794 2015 10.1002/adfm.201502646 A high-reliability kevlar fiber-ZnO nanowires hybrid nanogenerator and its application on self-powered UV detection 

  14. J. Phys. Condens. Matter Wang 16 R829 2004 10.1088/0953-8984/16/25/R01 Zinc oxide nanostructures: growth, properties and applications 

  15. Nano Energy Jin 50 632 2018 10.1016/j.nanoen.2018.05.068 Polarization-free high-crystallization β-PVDF piezoelectric nanogenerator toward self-powered 3D acceleration sensor 

  16. Appl. Phys. Lett. Li 88 2006 Electromechanical properties of poly(vinylidene-fluoride-chlorotrifluoroethylene) copolymer 

  17. Nano Energy Ryu 55 348 2019 10.1016/j.nanoen.2018.10.071 Intrinsically stretchable multi-functional fiber with energy harvesting and strain sensing capability 

  18. J. Phys. Chem. Solid. Alsaad 113 82 2018 10.1016/j.jpcs.2017.10.004 Effect of bromine deficiency on the lattice dynamics and dielectric properties of alpha-phase diisopropylammonium bromide molecular crystals 

  19. J. Appl. Crystallogr. Yadav 49 2053 2016 10.1107/S1600576716014552 Growth and structural and physical properties of diisopropylammonium bromide molecular single crystals 

  20. Phys. Chem. Chem. Phys. Li 16 5475 2014 10.1039/c3cp54083a In situ ZnO nanowire growth to promote the PVDF piezo phase and the ZnO-PVDF hybrid self-rectified nanogenerator as a touch sensor 

  21. Science You 357 80 306 2017 10.1126/science.aai8535 An organic-inorganic perovskite ferroelectric with large piezoelectric response 

  22. J. Appl. Phys. Yu 92 1489 2002 10.1063/1.1487435 Piezoelectric and strain properties of Ba(Ti1−xZrx)O3 ceramics 

  23. Appl. Phys. Express. Wang 4 2011 10.1143/APEX.4.061501 High normalized strain obtained in Li-modified (K,Na)NbO 3 lead-free piezoceramics 

  24. Nature Song 554 224 2018 10.1038/nature25476 Processing bulk natural wood into a high-performance structural material 

  25. Nat. Mater. Jang 12 893 2013 10.1038/nmat3738 Fabrication and deformation of three-dimensional hollow ceramic nanostructures 

  26. Small Na 14 1802239 2018 10.1002/smll.201802239 Emergence of new density-strength scaling law in 3D hollow ceramic nanoarchitectures 

  27. Science Meza 345 80 1322 2014 10.1126/science.1255908 Strong, lightweight, and recoverable three-dimensional ceramic nanolattices 

  28. Nat. Mater. Li 15 373 2016 10.1038/nmat4591 Smaller and stronger 

  29. J. Energy Chem. Tan 51 388 2020 10.1016/j.jechem.2020.03.053 Large-scale carambola-like V2O5 nanoflowers arrays on microporous reed carbon as improved electrochemical performances lithium-ion batteries cathode 

  30. Kurz 1 2018 2018 IEEE Int. Ultrason. Symp Determination of elastic and piezoelectric properties of Al0.84Sc0.16N thin films 

  31. Ceram. Int. Mirzaei 43 907 2017 10.1016/j.ceramint.2016.10.051 Zinc oxide nanoparticles: biological synthesis and biomedical applications 

  32. Nano Energy Yin 14 95 2015 10.1016/j.nanoen.2015.01.032 Piezoelectric performance enhancement of ZnO flexible nanogenerator by a NiO-ZnO p-n junction formation 

  33. Int. J. Hydrogen Energy Alfaro Cruz 43 10301 2018 10.1016/j.ijhydene.2018.04.054 ZnO thin films deposited by RF magnetron sputtering: effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production 

  34. J. Appl. Phys. Guziewicz 105 122413 2009 10.1063/1.3133803 ZnO grown by atomic layer deposition: a material for transparent electronics and organic heterojunctions 

  35. Mater. Sci. Semicond. Process. Hong 47 20 2016 10.1016/j.mssp.2016.02.010 Low temperature Solution-Processed ZnO film on flexible substrate 

  36. Energy Environ. Sci. Malakooti 9 634 2016 10.1039/C5EE03181H ZnO nanowire interfaces for high strength multifunctional composites with embedded energy harvesting 

  37. J. Phys. Chem. C Nie 121 26076 2017 10.1021/acs.jpcc.7b08016 Synthesis and structure-dependent optical properties of ZnO nanocomb and ZnO nanoflag 

  38. IOP Conf. Ser. Mater. Sci. Eng. Zhou 213 2017 10.1088/1757-899X/213/1/012009 Synthesis and photoluminescence properties of ZnO nanohelices 

  39. Small Gao 1 945 2005 10.1002/smll.200500165 High-yield synthesis of single-crystal nanosprings of ZnO 

  40. Nanoscale Ahn 5 10384 2013 10.1039/c3nr03115b Monolithic 3D titania with ultrathin nanoshell structures for enhanced photocatalytic activity and recyclability 

  41. Nanoscale Kim 10 3046 2018 10.1039/C7NR08167G Anomalous thermoelectricity of pure ZnO from 3D continuous ultrathin nanoshell structures 

  42. J. Mater. Chem. C. Park 2 2316 2014 10.1039/c3tc32194k Conformal phase masks made of polyurethane acrylate with optimized elastic modulus for 3D nanopatterning 

  43. Proc. Natl. Acad. Sci. Unit. States Am. Jeon 101 12428 2004 10.1073/pnas.0403048101 Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks 

  44. Nanotechnology Gannepalli 24 159501 2013 10.1088/0957-4484/24/15/159501 Corrigendum: mapping nanoscale elasticity and dissipation using dual frequency contact resonance AFM 

  45. ACS Nano Ahn 12 9126 2018 10.1021/acsnano.8b03264 Multifunctional polymer nanocomposites reinforced by 3D continuous ceramic nanofillers 

  46. Nat. Commun. Park 3 916 2012 10.1038/ncomms1929 Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors 

  47. Adv. Mater. Park 27 2015 10.1002/adma.201503746 Rapid, high-resolution 3D interference printing of multilevel ultralong nanochannel arrays for high-throughput nanofluidic transport 

  48. Electrochim. Acta Hyun 288 108 2018 10.1016/j.electacta.2018.08.064 3D ordered carbon/SnO2 hybrid nanostructures for energy storage applications 

  49. ACS Appl. Mater. Interfaces Cho 9 17369 2017 10.1021/acsami.7b03052 Three-Dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor 

  50. Nanoscale Lee 11 7025 2019 10.1039/C9NR01260E Strategies to improve the photocatalytic activity of TiO 2 : 3D nanostructuring and heterostructuring with graphitic carbon nanomaterials 

  51. Int. J. Hydrogen Energy Kim 44 28143 2019 10.1016/j.ijhydene.2019.09.071 Improving electrochemical active area of MoS2 via attached on 3D-ordered structures for hydrogen evolution reaction 

  52. Funct. Compos. Struct. Ahn 1 2019 10.1088/2631-6331/ab3692 High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nanopatterning 

  53. Adv. Funct. Mater. Zhang 25 6644 2015 10.1002/adfm.201502854 Ordered 3D thin-shell nanolattice materials with near-unity refractive indices 

  54. Thin Solid Films Elam 414 43 2002 10.1016/S0040-6090(02)00427-3 ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements 

  55. Mater. Today Johnson 17 236 2014 10.1016/j.mattod.2014.04.026 A brief review of atomic layer deposition: from fundamentals to applications 

  56. J. Vac. Sci. Technol. A Vacuum, Surfaces, Film. Muneshwar 34 2016 Plasma enhanced atomic layer deposition of ZnO with diethyl zinc and oxygen plasma: effect of precursor decomposition 

  57. J. King Saud Univ. Sci. Iqbal 28 347 2016 10.1016/j.jksus.2016.03.001 ALD grown nanostructured ZnO thin films: effect of substrate temperature on thickness and energy band gap 

  58. Crystals Seweryn 9 554 2019 10.3390/cryst9110554 Structural and electrical parameters of ZnO thin films grown by ALD with either water or ozone as oxygen precursors 

  59. Nanotechnology Pung 19 435609 2008 10.1088/0957-4484/19/43/435609 Preferential growth of ZnO thin films by the atomic layer deposition technique 

  60. ACS Nano Ahn 12 9126 2018 10.1021/acsnano.8b03264 Multifunctional polymer nanocomposites reinforced by 3D continuous ceramic nanofillers 

  61. J. Kor. Phys. Soc. Guziewicz 53 2880 2008 10.3938/jkps.53.2880 Extra-low temperature growth of ZnO thin films by atomic layer deposition 

  62. J. Appl. Phys. Banerjee 108 2010 10.1063/1.3466987 Structural, electrical, and optical properties of atomic layer deposition Al-doped ZnO films 

  63. Nano Lett. Zhao 4 587 2004 10.1021/nl035198a Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope 

  64. Rev. Sci. Instrum. Li 66 215 1995 10.1063/1.1145261 Simple, high-resolution interferometer for the measurement of frequency-dependent complex piezoelectric responses in ferroelectric ceramics 

  65. Appl. Phys. Lett. Sung 100 211903 2012 10.1063/1.4720169 Yielding and plastic slip in ZnO 

  66. Proc. Roy. Soc. Lond. Gibson A382 43 1982 The mechanics cellular materials of three-dimensional cellular materials 

  67. Philos. Mag. Briot 95 2955 2015 10.1080/14786435.2015.1078512 Developing scaling relations for the yield strength of nanoporous gold 

  68. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. Ashby 364 15 2006 10.1098/rsta.2005.1678 The properties of foams and lattices 

  69. Acta Mater. Zhang 60 4235 2012 10.1016/j.actamat.2012.04.025 Modeling the mechanical properties of optimally processed cordierite-mullite-alumina ceramic foams by X-ray computed tomography and finite element analysis 

  70. Mater. Des. Maconachie 183 108137 2019 10.1016/j.matdes.2019.108137 SLM lattice structures: properties, performance, applications and challenges 

  71. Met. Mater. Int. Kwon 2020 10.1007/s12540-020-00740-7 Compressive properties of nanoporous gold through nanoindentation: an analytical approach based on the expanding cavity model 

  72. Appl. Phys. Lett. Volkert 89 2006 10.1063/1.2240109 Approaching the theoretical strength in nanoporous Au 

  73. Acta Mater. Jin 57 2665 2009 10.1016/j.actamat.2009.02.017 Deforming nanoporous metal: role of lattice coherency 

  74. Annu. Rev. Mater. Res. McCue 46 263 2016 10.1146/annurev-matsci-070115-031739 Dealloying and dealloyed materials 

  75. J. Inst. Met. Tabor 79 1 1951 The hardness and strength of metals 

  76. J. Mater. Res. Feng 24 704 2009 10.1557/jmr.2009.0097 A quantitative analysis for the stress field around an elastoplastic indentation/contact 

  77. Nanoscale Novak 11 2019 10.1039/C9NR07406F 2D and 3D nanostructuring strategies for thermoelectric materials 

  78. Phys. Solid State Shein 49 1067 2007 10.1134/S106378340706008X Elastic parameters of single-crystal and polycrystalline wurtzite-like oxides BeO and ZnO : ab initio calculations 

  79. Surf. Coating. Technol. Chai 207 361 2012 10.1016/j.surfcoat.2012.07.021 Atomic layer deposition of zinc oxide films: effects of nanocrystalline characteristics on tribological performance 

  80. J. Am. Ceram. Soc. Birnboim 81 1493 2005 10.1111/j.1151-2916.1998.tb02508.x Comparative study of microwave sintering of zinc oxide at 2.45, 30, and 83 GHz 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로