$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Nitrogen-rich hierarchical porous carbon paper for a free-standing cathode of lithium sulfur battery

Carbon, v.172, 2021년, pp.624 - 636  

Park, Jae Hyun (Corresponding author.) ,  Choi, Won Yeong ,  Yang, Jeongwoo ,  Kim, Dohyeun ,  Gim, Hyeonseo ,  Lee, Jae W.

Abstract AI-Helper 아이콘AI-Helper

Abstract A free-standing cathode without any binder, conductor, and current collector is attractive due to its reduced weight and cost. This study introduces nitrogen-rich and hierarchical porous carbon fibers in the form of a free-standing carbon paper synthesized by NaBH4-aided electrospinning an...

Keyword

참고문헌 (79)

  1. Nature Armand 451 652 2008 10.1038/451652a Building better batteries 

  2. Electrochem. Commun. Byeon 60 199 2015 10.1016/j.elecom.2015.09.004 Effect of hydrogenation on performance of TiO2 (B) nanowire for lithium ion capacitors 

  3. ACS Nano Chang 13 1490 2019 In situ self-formed nanosheet MoS3/reduced graphene oxide material showing superior performance as a lithium-ion battery cathode 

  4. Adv Energy Mater Rosenman 5 2015 10.1002/aenm.201500212 Review on Li-sulfur battery systems: an integral perspective 

  5. Adv Energy Mater Hagen 5 2015 10.1002/aenm.201401986 Lithium-sulfur cells: the gap between the state-of-the-art and the requirements for high energy battery cells 

  6. Chem. Rev. Manthiram 114 11751 2014 10.1021/cr500062v Rechargeable lithium-sulfur batteries 

  7. Adv Energy Mater Peng 7 2017 Review on high-loading and high-energy lithium-sulfur batteries 

  8. Adv Energy Mater Agostini 5 2015 10.1002/aenm.201500481 An advanced lithium-ion sulfur battery for high energy storage 

  9. Adv Energy Mater Qie 6 2016 10.1002/aenm.201502459 A high energy lithium-sulfur battery with ultrahigh-loading lithium polysulfide cathode and its failure mechanism 

  10. Nat. Mater. Ji 8 500 2009 10.1038/nmat2460 A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries 

  11. J. Porous Mater. Kim 1 2019 Spent coffee derived hierarchical porous carbon and its application for energy storage 

  12. Electrochim. Acta Baik 330 2020 10.1016/j.electacta.2019.135264 One-pot conversion of carbon dioxide to CNT-grafted graphene bifunctional for sulfur cathode and thin interlayer of Li-S battery 

  13. Adv. Mater. Xiao 27 2891 2015 10.1002/adma.201405637 A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries 

  14. Chem. Commun. Xu 50 10468 2014 10.1039/C4CC04868G The superior cycle and rate performance of a novel sulfur cathode by immobilizing sulfur into porous N-doped carbon microspheres 

  15. Acs Appl Mater Inter Sun 5 5630 2013 10.1021/am400958x High efficiency immobilization of sulfur on nitrogen-enriched mesoporous carbons for Li-S batteries 

  16. Nano Res Liu 11 4026 2018 10.1007/s12274-018-1985-0 Self-standing Na-storage anode of Fe2O3 nanodots encapsulated in porous N-doped carbon nanofibers with ultra-high cyclic stability 

  17. J. Mater. Chem. Liu 5 1698 2017 10.1039/C6TA09961K Graphene highly scattered in porous carbon nanofibers: a binder-free and high-performance anode for sodium-ion batteries 

  18. Angew. Chem. Int. Ed. Song 54 4325 2015 10.1002/anie.201411109 Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes 

  19. J. Mater. Chem. Chang 3 18829 2015 10.1039/C5TA05053G Ultra-lightweight PANiNF/MWCNT-functionalized separators with synergistic suppression of polysulfide migration for Li-S batteries with pure sulfur cathodes 

  20. J. Phys. Chem. C Chen 119 10288 2015 10.1021/acs.jpcc.5b02596 Flexible carbon nanotube-graphene/sulfur composite film: free-standing cathode for high-performance lithium/sulfur batteries 

  21. J. Mater. Chem. Song 2 8623 2014 10.1039/C4TA00742E Flexible freestanding sandwich-structured sulfur cathode with superior performance for lithium-sulfur batteries 

  22. ACS Nano Kwon 12 3126 2018 10.1021/acsnano.7b08918 Carbon nanotube web with carboxylated polythiophene "assist" for high-performance battery electrodes 

  23. Nano Lett. Zheng 13 1265 2013 10.1021/nl304795g Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries 

  24. Nanomater. Energy Wang 11 678 2015 10.1016/j.nanoen.2014.11.060 Macroporous free-standing nano-sulfur/reduced graphene oxide paper as stable cathode for lithium-sulfur battery 

  25. Nano Lett. Wang 15 1796 2015 10.1021/acs.nanolett.5b00112 Slurryless Li2S/reduced graphene oxide cathode paper for high-performance lithium sulfur battery 

  26. J. Power Sources Zhang 290 159 2015 10.1016/j.jpowsour.2015.05.010 Titanium-dioxide-grafted carbon paper with immobilized sulfur as a flexible free-standing cathode for superior lithium-sulfur batteries 

  27. Adv. Funct. Mater. Yuan 24 6105 2014 10.1002/adfm.201401501 Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium-sulfur batteries 

  28. Adv Energy Mater Yu 7 2017 10.1002/aenm.201602347 Freestanding and sandwich-structured electrode material with high areal mass loading for long-life lithium-sulfur batteries 

  29. ACS Appl. Energy Mater. Park 3 5247 2020 10.1021/acsaem.0c00073 CO2-derived synthesis of hierarchical porous carbon cathode and free-standing N-rich carbon interlayer applied for lithium-sulfur batteries 

  30. Carbon Zhang 53 216 2013 10.1016/j.carbon.2012.10.051 Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure 

  31. Appl. Catal. B Environ. Kang 186 41 2016 10.1016/j.apcatb.2015.12.045 Enhanced methane decomposition over nickel-carbon-B2O3 core-shell catalysts derived from carbon dioxide 

  32. Carbon Kim 126 215 2018 10.1016/j.carbon.2017.10.020 Facile nano-templated CO2 conversion into highly interconnected hierarchical porous carbon for high-performance supercapacitor electrodes 

  33. J. Electrochem. Soc. Park 166 A838 2019 10.1149/2.1071904jes Visualized pulverization via ex situ analyses: nickel sulfide anode caged in a hierarchical carbon 

  34. J Co2 Util Choi 30 28 2019 10.1016/j.jcou.2019.01.001 Cobalt oxide-porous carbon composite derived from CO2 for the enhanced performance of lithium-ion battery 

  35. J. Mater. Chem. Zhang 1 8665 2013 10.1039/c3ta11248a Boron-doped electrocatalysts derived from carbon dioxide 

  36. ACS Nano Li 12 10240 2018 10.1021/acsnano.8b05246 Biotemplating growth of nepenthes-like N-doped graphene as a bifunctional polysulfide scavenger for Li-S batteries 

  37. Nanomater. Energy Yin 25 203 2016 10.1016/j.nanoen.2016.04.053 Understanding the interactions between lithium polysulfides and N-doped graphene using density functional theory calculations 

  38. Sci Rep-Uk Li 6 23495 2016 10.1038/srep23495 Unraveling the formation mechanism of graphitic nitrogen-doping in thermally treated graphene with ammonia 

  39. Electrochim. Acta Park 136310 2020 10.1016/j.electacta.2020.136310 Graphene intercalated free-standing carbon paper coated with MnO2 for anode materials of lithium ion batteries 

  40. ACS Nano Lee 14 9744 2020 10.1021/acsnano.0c01452 CO2-Oxidized Ti3C2tx-MXenes components for lithium-sulfur batteries: suppressing the shuttle phenomenon through physical and chemical adsorption 

  41. Advanced Science Yang 5 2018 10.1002/advs.201800763 CoSe2 nanoparticles encapsulated by N-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries 

  42. Adv Energy Mater Hwang 6 2016 10.1002/aenm.201501480 High-energy, high-rate, lithium-sulfur batteries: synergetic effect of hollow TiO2-webbed carbon nanotubes and a dual functional carbon-paper interlayer 

  43. J. Mater. Chem. Luo 6 8612 2018 10.1039/C8TA01726C An interwoven MoO3@CNT scaffold interlayer for high-performance lithium-sulfur batteries 

  44. Adv. Mater. Lim 31 2019 Approaching ultrastable high-rate Li-S batteries through hierarchically porous titanium nitride synthesized by multiscale phase separation 

  45. J. Mater. Chem. Sun 8 62 2020 10.1039/C9TA09347H Sulfur covalently bonded to porous graphitic carbon as an anode material for lithium-ion capacitors with high energy storage performance 

  46. Acs Appl Mater Inter Li 10 6378 2018 10.1021/acsami.7b18571 Electrochemical investigation of natural ore molybdenite (MoS2) as a first-hand anode for lithium storages 

  47. Chem. Soc. Rev. Wang 45 5925 2016 10.1039/C5CS00580A Electrochemical capacitors: mechanism, materials, systems, characterization and applications 

  48. RSC Adv. Du 7 13304 2017 10.1039/C6RA28580E Synthesis of Li2Ni2(MoO4)(3) as a high-performance positive electrode for asymmetric supercapacitors 

  49. ACS Nano Huang 12 9504 2018 10.1021/acsnano.8b04857 Mechanism investigation of high-performance Li-polysulfide batteries enabled by tungsten disulfide nanopetals 

  50. Advanced Science Li 6 1802362 2019 10.1002/advs.201802362 Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure 

  51. RSC Adv. Lacey 6 3632 2016 10.1039/C5RA23635E The Li-S battery: an investigation of redox shuttle and self-discharge behaviour with LiNO 3-containing electrolytes 

  52. J. Mater. Chem. Hong 5 14775 2017 10.1039/C7TA03552G A rGO-CNT aerogel covalently bonded with a nitrogen-rich polymer as a polysulfide adsorptive cathode for high sulfur loading lithium sulfur batteries 

  53. Nanomater. Energy Wang 30 700 2016 10.1016/j.nanoen.2016.10.049 Stabilizing high sulfur loading Li-S batteries by chemisorption of polysulfide on three-dimensional current collector 

  54. ACS Nano Pang 10 4111 2016 10.1021/acsnano.5b07347 Long-life and high-areal-capacity Li S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption 

  55. Electrochim. Acta Byeon 258 979 2017 10.1016/j.electacta.2017.11.149 Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes 

  56. Nanoscale Kim 12 7822 2020 10.1039/C9NR10552B Transformation of carbon dioxide into carbon nanotubes for enhanced ion transport and energy storage 

  57. Nanomater. Energy Chen 47 331 2018 10.1016/j.nanoen.2018.03.008 Self-standing sulfur cathodes enabled by 3D hierarchically porous titanium monoxide-graphene composite film for high-performance lithium-sulfur batteries 

  58. ACS Nano Wu 11 4694 2017 10.1021/acsnano.7b00596 Sulfur nanodots stitched in 2D "Bubble-Like" interconnected carbon fabric as reversibility-enhanced cathodes for lithium-sulfur batteries 

  59. Adv. Funct. Mater. Kang 26 1225 2016 10.1002/adfm.201504262 Freestanding bilayer carbon-sulfur cathode with function of entrapping polysulfide for high performance Li-S batteries 

  60. Energy Storage Mater Ummethala 10 206 2018 10.1016/j.ensm.2017.04.004 Lightweight, free-standing 3D interconnected carbon nanotube foam as a flexible sulfur host for high performance lithium-sulfur battery cathodes 

  61. Adv. Funct. Mater. Peng 26 6351 2016 10.1002/adfm.201602071 3D carbonaceous current collectors: the origin of enhanced cycling stability for high-sulfur-loading lithium-sulfur batteries 

  62. Adv. Mater. Xiao 29 206 2017 10.1002/adma.201703324 Integration of graphene, nano sulfur, and conducting polymer into compact, flexible lithium-sulfur battery cathodes with ultrahigh volumetric capacity and superior cycling stability for foldable devices 

  63. J. Mater. Chem. Song 5 6832 2017 10.1039/C7TA01171G A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium-sulfur batteries 

  64. Adv Energy Mater Zhou 5 2015 10.1002/aenm.201402263 Dual-confined flexible sulfur cathodes encapsulated in nitrogen-doped double-shelled hollow carbon spheres and wrapped with graphene for Li-S batteries 

  65. J. Power Sources Wang 342 772 2017 10.1016/j.jpowsour.2017.01.001 Poly(3,4-ethylene-dioxythiophene)-poly(styrenesulfonate) glued and graphene encapsulated sulfur-carbon film for high-performance free-standing lithium-sulfur batteries 

  66. Nano Lett. Li 15 3073 2015 10.1021/acs.nanolett.5b00064 Vertically aligned sulfur-graphene nanowalls on substrates for ultrafast lithium-sulfur batteries 

  67. Adv. Funct. Mater. Mei 27 2017 10.1002/adfm.201701176 Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium-sulfur batteries 

  68. Adv. Mater. He 29 7274 2017 10.1002/adma.201702707 Yolk-shelled C@Fe3O4 nanoboxes as efficient sulfur hosts for high-performance lithium-sulfur batteries 

  69. ACS Nano Ma 11 7274 2017 10.1021/acsnano.7b03227 Cerium oxide nanocrystal embedded bimodal micromesoporous nitrogen-rich carbon nanospheres as effective sulfur host for lithium-sulfur batteries 

  70. Adv Energy Mater Zhang 7 2017 A high-efficiency sulfur/carbon composite based on 3D graphene Nanosheet@Carbon nanotube matrix as cathode for lithium-sulfur battery 

  71. Adv. Mater. Hu 29 2017 A sulfur-rich copolymer@ CNT hybrid cathode with dual-confinement of polysulfides for high-performance lithium-sulfur batteries 

  72. Adv. Mater. Rehman 28 3167 2016 10.1002/adma.201506111 Rational design of Si/SiO2@Hierarchical porous carbon spheres as efficient polysulfide reservoirs for high-performance Li-S battery 

  73. Adv Energy Mater Zhang 7 2017 A conductive molecular framework derived Li2S/N, P-codoped carbon cathode for advanced lithium-sulfur batteries 

  74. J. Mater. Chem. Hao 4 17711 2016 10.1039/C6TA07411A TiN as a simple and efficient polysulfide immobilizer for lithium-sulfur batteries 

  75. Angew. Chem. Int. Ed. Li 54 12886 2015 10.1002/anie.201506972 Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries 

  76. Acs Appl Mater Inter Wang 9 4320 2017 10.1021/acsami.6b07961 Ultrathin cobaltosic oxide nanosheets as an effective sulfur encapsulation matrix with strong affinity toward polysulfides 

  77. Acs Appl Mater Inter Ponraj 8 4000 2016 10.1021/acsami.5b11327 Improvement of cycling performance of lithium-sulfur batteries by using magnesium oxide as a functional additive for trapping lithium polysulfide 

  78. Carbon Wang 144 745 2019 10.1016/j.carbon.2018.12.113 Insight to the synergistic effect of N-doping level and pore structure on improving the electrochemical performance of sulfur/N-doped porous carbon cathode for Li-S batteries 

  79. Adv. Funct. Mater. Song 24 1243 2014 10.1002/adfm.201302631 Nitrogen- doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high- areal- capacity sulfur cathode with exceptional cycling stability for lithium- sulfur batteries 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로