$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Spectral and modal analysis of a cavitating flow through an orifice

Experimental thermal and fluid science : ETF science, v.121, 2021년, pp.110251 -   

Esposito, C. (von Karman Institute for Fluid Dynamics) ,  Mendez, M.A. (von Karman Institute for Fluid Dynamics) ,  Steelant, J. (KU Leuven) ,  Vetrano, M.R. (KU Leuven)

Abstract AI-Helper 아이콘AI-Helper

Abstract Cavitation phenomena, produced when a flow is accelerated through a restriction, are of fundamental importance because of the large pressure oscillation they induce on pipelines. This paper presents an experimental investigation of various cavitation regimes produced at the exit of an orif...

주제어

참고문헌 (55)

  1. Ahuja 2013 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, American Institute of Aeronautics and Astronautics Numerical simulations of instabilities in single-hole orifice elements 

  2. Hitt 4029 2012 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit Experimental investigation of cavitation induced feedline instability from an orifice 

  3. J. Ozol, J. Kim, J. Healzer, Cavitation experience with control valves in nuclear power plants, in: Cavitation and gas-liquid flow in fluid machinery and devices. FED-Volume 190, 1994. 

  4. 10.1115/PVP2005-71232 P. Testud, A. Hirschberg, P. Moussou, Y. Aureégan, Cavitating orifice: Flow regime transitions and low frequency sound production, in: Volume 4: Fluid Structure Interaction, ASME, 2005. doi:10.1115/pvp2005-71232. 

  5. JSME Int. J. Ser. B Soyama 38 2 245 1995 10.1299/jsmeb.38.245 High-speed observations of the cavitation cloud around a high-speed submerged water jet 

  6. CIRP Ann. Beaucamp 67 1 361 2018 10.1016/j.cirp.2018.04.075 Process mechanism in ultrasonic cavitation assisted fluid jet polishing 

  7. Biochem. Eng. J. Jyoti 7 3 201 2001 10.1016/S1369-703X(00)00128-5 Water disinfection by acoustic and hydrodynamic cavitation 

  8. Ultrason. Sonochem. Dular 29 577 2016 10.1016/j.ultsonch.2015.10.010 Use of hydrodynamic cavitation in (waste)water treatment 

  9. Aquac. Res. Svendsen 49 3 1166 2017 10.1111/are.13567 Effect of ultrasonic cavitation on small and large organisms for water disinfection during fish transport 

  10. Trans. ASME Knapp 77 1045 1955 Recent investigations of the mechanics of cavitation and cavitation damage 

  11. J. Fluids Eng. Le 115 2 243 1993 10.1115/1.2910131 Partial cavities: Global behavior and mean pressure distribution 

  12. J. Fluids Eng. Hutli 130 2 021304 2008 10.1115/1.2813125 Frequency in shedding/discharging cavitation clouds determined by visualization of a submerged cavitating jet 

  13. J. Fluid Mech. Ganesh 802 37 2016 10.1017/jfm.2016.425 Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities 

  14. J. Fluid Mech. Arakeri 159 -1 131 1985 10.1017/S0022112085003135 On the evidence for the effect of bubble interference on cavitation noise 

  15. Ultrasonics Sugita 74 174 2017 10.1016/j.ultras.2016.10.008 Nonlinear normal modes and localization in two bubble oscillators 

  16. J. Basic Eng. Shima 93 3 426 1971 10.1115/1.3425268 The natural frequencies of two spherical bubbles oscillating in water 

  17. JSME Int. J. Ser. B Takahira 37 2 297 1994 10.1299/jsmeb.37.297 Dynamics of a cluster of bubbles in a liquid. theoretical analysis 

  18. JSME Int. J. Ser. B Takahira 38 3 432 1995 10.1299/jsmeb.38.432 Nonlinear oscillations of a cluster of bubbles in a sound field. bifurcation structure 

  19. J. Fluids Eng. Furness 97 4 515 1975 10.1115/1.3448098 Experimental and theoretical studies of two-dimensional fixed-type cavities 

  20. J. Basic Eng. Wade 88 1 273 1966 10.1115/1.3645828 Experimental observations on the flow past a plano-convex hydrofoil 

  21. J. Fluid Mech. Reisman 355 255 1998 10.1017/S0022112097007830 Observations of shock waves in cloud cavitation 

  22. J. Fluids Eng. Leroux 126 1 94 2004 10.1115/1.1627835 An experimental study of unsteady partial cavitation 

  23. Brennen 2005 Fundamentals of multiphase flow 

  24. Int. J. Multiph. Flow Jahangir 106 34 2018 10.1016/j.ijmultiphaseflow.2018.04.019 Dynamics of partial cavitation in an axisymmetric converging-diverging nozzle 

  25. 10.1017/S0022112001005420 M. Callenaere, J.-P. Franc, J.-M. Michel, M. Riondet, The cavitation instability induced by the development of a re-entrant jet, Journal of Fluid Mechanics 444. doi:10.1017/s0022112001005420. 

  26. Sato 2010 ASME 2010 3rd Joint US-European Fluids Engineering Summer Meeting: Volume 2, Fora, ASME Reentrant motion in cloud cavitation due to cloud collapse and pressure wave propagation, in 

  27. Int. J. Heat Fluid Flow Stanley 50 169 2014 10.1016/j.ijheatfluidflow.2014.07.004 Re-entrant jet mechanism for periodic cavitation shedding in a cylindrical orifice 

  28. J. Fluid Sci. Technol. Nishimura 7 3 405 2012 10.1299/jfst.7.405 Similarity law on shedding frequency of cavitation cloud induced by a cavitating jet 

  29. Int. J. Sustain. Eng. Soyama 3 1 25 2010 10.1080/19397030903395174 Sustainable surface modification using cavitation impact for enhancing fatigue strength demonstrated by a power circulating-type gear tester 

  30. J. Fluids Eng. Soyama 133 10 101301 2011 10.1115/1.4004905 Enhancing the aggressive intensity of a cavitating jet by means of the nozzle outlet geometry 

  31. Exp. Fluids Stanley 51 5 1189 2011 10.1007/s00348-011-1138-7 Periodic cavitation shedding in a cylindrical orifice 

  32. Int. J. Heat Fluid Flow Danlos 47 9 2014 10.1016/j.ijheatfluidflow.2014.02.001 Cavitation regime detection through proper orthogonal decomposition: Dynamics analysis of the sheet cavity on a grooved convergent-divergent nozzle 

  33. Exp. Thermal Fluid Sci. De Giorgi 93 242 2018 10.1016/j.expthermflusci.2018.01.001 Characterization of cavitating flow regimes in an internal sharp-edged orifice by means of proper orthogonal decomposition 

  34. Wear Soyama 297 1-2 895 2013 10.1016/j.wear.2012.11.008 Effect of nozzle geometry on a standard cavitation erosion test using a cavitating jet 

  35. Chem. Eng. Res. Des. Simpson 136 698 2018 10.1016/j.cherd.2018.06.014 Modelling of hydrodynamic cavitation with orifice: Influence of different orifice designs 

  36. Exp. Thermal Fluid Sci. Mendez 91 256 2018 10.1016/j.expthermflusci.2017.10.032 Multiscale modal analysis of an oscillating impinging gas jet 

  37. AIP Conf. Proc. Mendez 060018 2018 1978 Multi-scale proper orthogonal decomposition (mPOD) 

  38. J. Fluid Mech. Mendez 870 988 2019 10.1017/jfm.2019.212 Multi-scale proper orthogonal decomposition of complex fluid flows 

  39. Exp. Thermal Fluid Sci. Mendez 106 48 2019 10.1016/j.expthermflusci.2019.03.004 Experimental analysis of the stability of the jet wiping process, part II: Multiscale modal analysis of the gas jet-liquid film interaction 

  40. Exp. Fluids Dular 53 5 1233 2012 10.1007/s00348-012-1356-7 Scale effect on unsteady cloud cavitation 

  41. J. Fluid Mech. Pelz 817 439 2017 10.1017/jfm.2017.75 The transition from sheet to cloud cavitation 

  42. C. Esposito, M.A. Mendez, J.-B. Gouriet, J. Steelant, M.R. Vetrano, Cloud cavitation instabilities downstream of an orifice, https://flucome2019. unina. it/e-book/FLUCOME2019. html. 

  43. Exp. Thermal Fluid Sci. Esposito 112 109949 2020 10.1016/j.expthermflusci.2019.109949 Void fraction and speed of sound measurement in cavitating flows by the three pressure transducers (3pt) technique 

  44. Quart. Appl. Math. Sirovich 45 3 561 1987 10.1090/qam/910462 Turbulence and the dynamics of coherent structures. i. coherent structures 

  45. Annu. Rev. Fluid Mech. Berkooz 25 1 539 1993 10.1146/annurev.fl.25.010193.002543 The proper orthogonal decomposition in the analysis of turbulent flows 

  46. J. Fluid Mech. Rowley 641 115 2009 10.1017/S0022112009992059 Spectral analysis of nonlinear flows 

  47. J. Fluid Mech. Schmid 656 5 2010 10.1017/S0022112010001217 Dynamic mode decomposition of numerical and experimental data 

  48. J. Fluid Mech. Sieber 792 798 2016 10.1017/jfm.2016.103 Spectral proper orthogonal decomposition 

  49. J. Fluid Mech. Noack 809 843 2016 10.1017/jfm.2016.678 Recursive dynamic mode decomposition of transient and post-transient wake flows 

  50. Ultrason. Sonochem. Šarc 34 51 2017 10.1016/j.ultsonch.2016.05.020 The issue of cavitation number value in studies of water treatment by hydrodynamic cavitation 

  51. Gustavsson 576 2008 46th AIAA Aerospace Sciences Meeting and Exhibit Experimental study of cryogenic cavitation using fluoroketone 

  52. J. Fluids Eng. Arndt 114 3 430 1992 10.1115/1.2910049 Water quality effects on cavitation inception in a trailing vortex 

  53. Atom. Sprays Tamaki 8 2 179 1998 10.1615/AtomizSpr.v8.i2.30 Effects of cavitation and internal flow on atomization of a liquid jet 

  54. Fuel Payri 84 5 551 2005 10.1016/j.fuel.2004.10.009 Using spray momentum flux measurements to understand the influence of diesel nozzle geometry on spray characteristics 

  55. Adv. Mech. Eng. Ferrarese 7 3 2015 10.1177/1687814015575974 New method for predicting the incipient cavitation index by means of single-phase computational fluid dynamics model 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로